Learning Interaction-aware Guidance Policies for Motion Planning in
Dense Traffic Scenarios
- URL: http://arxiv.org/abs/2107.04538v1
- Date: Fri, 9 Jul 2021 16:43:12 GMT
- Title: Learning Interaction-aware Guidance Policies for Motion Planning in
Dense Traffic Scenarios
- Authors: Bruno Brito, Achin Agarwal and Javier Alonso-Mora
- Abstract summary: This paper presents a novel framework for interaction-aware motion planning in dense traffic scenarios.
We propose to learn, via deep Reinforcement Learning (RL), an interaction-aware policy providing global guidance about the cooperativeness of other vehicles.
The learned policy can reason and guide the local optimization-based planner with interactive behavior to pro-actively merge in dense traffic while remaining safe in case the other vehicles do not yield.
- Score: 8.484564880157148
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Autonomous navigation in dense traffic scenarios remains challenging for
autonomous vehicles (AVs) because the intentions of other drivers are not
directly observable and AVs have to deal with a wide range of driving
behaviors. To maneuver through dense traffic, AVs must be able to reason how
their actions affect others (interaction model) and exploit this reasoning to
navigate through dense traffic safely. This paper presents a novel framework
for interaction-aware motion planning in dense traffic scenarios. We explore
the connection between human driving behavior and their velocity changes when
interacting. Hence, we propose to learn, via deep Reinforcement Learning (RL),
an interaction-aware policy providing global guidance about the cooperativeness
of other vehicles to an optimization-based planner ensuring safety and
kinematic feasibility through constraint satisfaction. The learned policy can
reason and guide the local optimization-based planner with interactive behavior
to pro-actively merge in dense traffic while remaining safe in case the other
vehicles do not yield. We present qualitative and quantitative results in
highly interactive simulation environments (highway merging and unprotected
left turns) against two baseline approaches, a learning-based and an
optimization-based method. The presented results demonstrate that our method
significantly reduces the number of collisions and increases the success rate
with respect to both learning-based and optimization-based baselines.
Related papers
- A Conflicts-free, Speed-lossless KAN-based Reinforcement Learning Decision System for Interactive Driving in Roundabouts [17.434924472015812]
This paper introduces a learning-based algorithm tailored to foster safe and efficient driving behaviors in roundabouts.
The proposed algorithm employs a deep Q-learning network to learn safe and efficient driving strategies in complex multi-vehicle roundabouts.
The results show that our proposed system consistently achieves safe and efficient driving whilst maintaining a stable training process.
arXiv Detail & Related papers (2024-08-15T16:10:25Z) - Robust Driving Policy Learning with Guided Meta Reinforcement Learning [49.860391298275616]
We introduce an efficient method to train diverse driving policies for social vehicles as a single meta-policy.
By randomizing the interaction-based reward functions of social vehicles, we can generate diverse objectives and efficiently train the meta-policy.
We propose a training strategy to enhance the robustness of the ego vehicle's driving policy using the environment where social vehicles are controlled by the learned meta-policy.
arXiv Detail & Related papers (2023-07-19T17:42:36Z) - iPLAN: Intent-Aware Planning in Heterogeneous Traffic via Distributed
Multi-Agent Reinforcement Learning [57.24340061741223]
We introduce a distributed multi-agent reinforcement learning (MARL) algorithm that can predict trajectories and intents in dense and heterogeneous traffic scenarios.
Our approach for intent-aware planning, iPLAN, allows agents to infer nearby drivers' intents solely from their local observations.
arXiv Detail & Related papers (2023-06-09T20:12:02Z) - RLPG: Reinforcement Learning Approach for Dynamic Intra-Platoon Gap
Adaptation for Highway On-Ramp Merging [14.540226579203207]
A platoon refers to a group of vehicles traveling together in very close proximity.
Recent research has revealed a detrimental effect of the extremely small intra-platoon gap on traffic flow for highway on-ramp merging.
We present a novel reinforcement learning framework that adaptively adjusts the intra-platoon gap of an individual platoon member to maximize traffic flow.
arXiv Detail & Related papers (2022-12-07T07:33:54Z) - Exploring the trade off between human driving imitation and safety for
traffic simulation [0.34410212782758043]
We show that a trade-off exists between imitating human driving and maintaining safety when learning driving policies.
We propose a multi objective learning algorithm (MOPPO) that improves both objectives together.
arXiv Detail & Related papers (2022-08-09T14:30:19Z) - Learning to Help Emergency Vehicles Arrive Faster: A Cooperative
Vehicle-Road Scheduling Approach [24.505687255063986]
Vehicle-centric scheduling approaches recommend optimal paths for emergency vehicles.
Road-centric scheduling approaches aim to improve the traffic condition and assign a higher priority for EVs to pass an intersection.
We propose LEVID, a cooperative VehIcle-roaD scheduling approach including a real-time route planning module and a collaborative traffic signal control module.
arXiv Detail & Related papers (2022-02-20T10:25:15Z) - A Cooperation-Aware Lane Change Method for Autonomous Vehicles [16.937363492078426]
This paper presents a cooperation-aware lane change method utilizing interactions between vehicles.
We first propose an interactive trajectory prediction method to explore possible cooperations between an AV and the others.
We then propose a motion planning algorithm based on model predictive control (MPC), which incorporates AV's decision and surrounding vehicles' interactive behaviors into constraints.
arXiv Detail & Related papers (2022-01-26T04:45:45Z) - Learning Interactive Driving Policies via Data-driven Simulation [125.97811179463542]
Data-driven simulators promise high data-efficiency for driving policy learning.
Small underlying datasets often lack interesting and challenging edge cases for learning interactive driving.
We propose a simulation method that uses in-painted ado vehicles for learning robust driving policies.
arXiv Detail & Related papers (2021-11-23T20:14:02Z) - Transferable Deep Reinforcement Learning Framework for Autonomous
Vehicles with Joint Radar-Data Communications [69.24726496448713]
We propose an intelligent optimization framework based on the Markov Decision Process (MDP) to help the AV make optimal decisions.
We then develop an effective learning algorithm leveraging recent advances of deep reinforcement learning techniques to find the optimal policy for the AV.
We show that the proposed transferable deep reinforcement learning framework reduces the obstacle miss detection probability by the AV up to 67% compared to other conventional deep reinforcement learning approaches.
arXiv Detail & Related papers (2021-05-28T08:45:37Z) - End-to-End Intersection Handling using Multi-Agent Deep Reinforcement
Learning [63.56464608571663]
Navigating through intersections is one of the main challenging tasks for an autonomous vehicle.
In this work, we focus on the implementation of a system able to navigate through intersections where only traffic signs are provided.
We propose a multi-agent system using a continuous, model-free Deep Reinforcement Learning algorithm used to train a neural network for predicting both the acceleration and the steering angle at each time step.
arXiv Detail & Related papers (2021-04-28T07:54:40Z) - Deep Structured Reactive Planning [94.92994828905984]
We propose a novel data-driven, reactive planning objective for self-driving vehicles.
We show that our model outperforms a non-reactive variant in successfully completing highly complex maneuvers.
arXiv Detail & Related papers (2021-01-18T01:43:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.