Few-Shot Graph Learning for Molecular Property Prediction
- URL: http://arxiv.org/abs/2102.07916v1
- Date: Tue, 16 Feb 2021 01:55:34 GMT
- Title: Few-Shot Graph Learning for Molecular Property Prediction
- Authors: Zhichun Guo, Chuxu Zhang, Wenhao Yu, John Herr, Olaf Wiest, Meng
Jiang, Nitesh V. Chawla
- Abstract summary: We propose Meta-MGNN, a novel model for few-shot molecular property prediction.
To exploit unlabeled molecular information, Meta-MGNN further incorporates molecular structure, attribute based self-supervised modules and self-attentive task weights.
Extensive experiments on two public multi-property datasets demonstrate that Meta-MGNN outperforms a variety of state-of-the-art methods.
- Score: 46.60746023179724
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The recent success of graph neural networks has significantly boosted
molecular property prediction, advancing activities such as drug discovery. The
existing deep neural network methods usually require large training dataset for
each property, impairing their performances in cases (especially for new
molecular properties) with a limited amount of experimental data, which are
common in real situations. To this end, we propose Meta-MGNN, a novel model for
few-shot molecular property prediction. Meta-MGNN applies molecular graph
neural network to learn molecular representation and builds a meta-learning
framework for model optimization. To exploit unlabeled molecular information
and address task heterogeneity of different molecular properties, Meta-MGNN
further incorporates molecular structure, attribute based self-supervised
modules and self-attentive task weights into the former framework,
strengthening the whole learning model. Extensive experiments on two public
multi-property datasets demonstrate that Meta-MGNN outperforms a variety of
state-of-the-art methods.
Related papers
- Contrastive Dual-Interaction Graph Neural Network for Molecular Property Prediction [0.0]
We introduce DIG-Mol, a novel self-supervised graph neural network framework for molecular property prediction.
DIG-Mol integrates a momentum distillation network with two interconnected networks to efficiently improve molecular characterization.
We have established DIG-Mol's state-of-the-art performance through extensive experimental evaluation in a variety of molecular property prediction tasks.
arXiv Detail & Related papers (2024-05-04T10:09:27Z) - Multi-Modal Representation Learning for Molecular Property Prediction:
Sequence, Graph, Geometry [6.049566024728809]
Deep learning-based molecular property prediction has emerged as a solution to the resource-intensive nature of traditional methods.
In this paper, we propose a novel multi-modal representation learning model, called SGGRL, for molecular property prediction.
To ensure consistency across modalities, SGGRL is trained to maximize the similarity of representations for the same molecule while minimizing similarity for different molecules.
arXiv Detail & Related papers (2024-01-07T02:18:00Z) - MultiModal-Learning for Predicting Molecular Properties: A Framework Based on Image and Graph Structures [2.5563339057415218]
MolIG is a novel MultiModaL molecular pre-training framework for predicting molecular properties based on Image and Graph structures.
It amalgamates the strengths of both molecular representation forms.
It exhibits enhanced performance in downstream tasks pertaining to molecular property prediction within benchmark groups.
arXiv Detail & Related papers (2023-11-28T10:28:35Z) - Atomic and Subgraph-aware Bilateral Aggregation for Molecular
Representation Learning [57.670845619155195]
We introduce a new model for molecular representation learning called the Atomic and Subgraph-aware Bilateral Aggregation (ASBA)
ASBA addresses the limitations of previous atom-wise and subgraph-wise models by incorporating both types of information.
Our method offers a more comprehensive way to learn representations for molecular property prediction and has broad potential in drug and material discovery applications.
arXiv Detail & Related papers (2023-05-22T00:56:00Z) - Implicit Geometry and Interaction Embeddings Improve Few-Shot Molecular
Property Prediction [53.06671763877109]
We develop molecular embeddings that encode complex molecular characteristics to improve the performance of few-shot molecular property prediction.
Our approach leverages large amounts of synthetic data, namely the results of molecular docking calculations.
On multiple molecular property prediction benchmarks, training from the embedding space substantially improves Multi-Task, MAML, and Prototypical Network few-shot learning performance.
arXiv Detail & Related papers (2023-02-04T01:32:40Z) - Graph neural networks for the prediction of molecular structure-property
relationships [59.11160990637615]
Graph neural networks (GNNs) are a novel machine learning method that directly work on the molecular graph.
GNNs allow to learn properties in an end-to-end fashion, thereby avoiding the need for informative descriptors.
We describe the fundamentals of GNNs and demonstrate the application of GNNs via two examples for molecular property prediction.
arXiv Detail & Related papers (2022-07-25T11:30:44Z) - Predicting Aqueous Solubility of Organic Molecules Using Deep Learning
Models with Varied Molecular Representations [3.10678679607547]
The goal of this study is to develop a general model capable of predicting the solubility of a broad range of organic molecules.
Using the largest currently available solubility dataset, we implement deep learning-based models to predict solubility from molecular structure.
We find that models using molecular descriptors achieve the best performance, with GNN models also achieving good performance.
arXiv Detail & Related papers (2021-05-26T15:54:54Z) - Advanced Graph and Sequence Neural Networks for Molecular Property
Prediction and Drug Discovery [53.00288162642151]
We develop MoleculeKit, a suite of comprehensive machine learning tools spanning different computational models and molecular representations.
Built on these representations, MoleculeKit includes both deep learning and traditional machine learning methods for graph and sequence data.
Results on both online and offline antibiotics discovery and molecular property prediction tasks show that MoleculeKit achieves consistent improvements over prior methods.
arXiv Detail & Related papers (2020-12-02T02:09:31Z) - ASGN: An Active Semi-supervised Graph Neural Network for Molecular
Property Prediction [61.33144688400446]
We propose a novel framework called Active Semi-supervised Graph Neural Network (ASGN) by incorporating both labeled and unlabeled molecules.
In the teacher model, we propose a novel semi-supervised learning method to learn general representation that jointly exploits information from molecular structure and molecular distribution.
At last, we proposed a novel active learning strategy in terms of molecular diversities to select informative data during the whole framework learning.
arXiv Detail & Related papers (2020-07-07T04:22:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.