Multi-View Pre-Trained Model for Code Vulnerability Identification
- URL: http://arxiv.org/abs/2208.05227v1
- Date: Wed, 10 Aug 2022 09:00:58 GMT
- Title: Multi-View Pre-Trained Model for Code Vulnerability Identification
- Authors: Xuxiang Jiang, Yinhao Xiao, Jun Wang, Wei Zhang
- Abstract summary: We propose a novel Multi-View Pre-Trained Model (MV-PTM) that encodes both sequential and multi-type structural information of the source code.
Experiments conducted on two public datasets demonstrate the superiority of MV-PTM.
- Score: 10.129948567398506
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Vulnerability identification is crucial for cyber security in the
software-related industry. Early identification methods require significant
manual efforts in crafting features or annotating vulnerable code. Although the
recent pre-trained models alleviate this issue, they overlook the multiple rich
structural information contained in the code itself. In this paper, we propose
a novel Multi-View Pre-Trained Model (MV-PTM) that encodes both sequential and
multi-type structural information of the source code and uses contrastive
learning to enhance code representations. The experiments conducted on two
public datasets demonstrate the superiority of MV-PTM. In particular, MV-PTM
improves GraphCodeBERT by 3.36\% on average in terms of F1 score.
Related papers
- Coding-PTMs: How to Find Optimal Code Pre-trained Models for Code Embedding in Vulnerability Detection? [30.84647604639891]
We investigate the effects of code embedding generated by ten different code PTMs on the performance of vulnerability detection.
We propose Coding-PTMs, a recommendation framework to assist engineers in selecting optimal code PTMs for their specific vulnerability detection tasks.
arXiv Detail & Related papers (2024-08-09T04:56:26Z) - How to get better embeddings with code pre-trained models? An empirical
study [6.220333404184779]
We study five different code pre-trained models (PTMs) to generate embeddings for downstream classification tasks.
We find that embeddings obtained through special tokens do not sufficiently aggregate the semantic information of the entire code snippet.
The quality of code embeddings obtained by combing code data and text data in the same way as pre-training the PTMs is poor and cannot guarantee richer semantic information.
arXiv Detail & Related papers (2023-11-14T10:44:21Z) - FLIP: Fine-grained Alignment between ID-based Models and Pretrained Language Models for CTR Prediction [49.510163437116645]
Click-through rate (CTR) prediction plays as a core function module in personalized online services.
Traditional ID-based models for CTR prediction take as inputs the one-hot encoded ID features of tabular modality.
Pretrained Language Models(PLMs) has given rise to another paradigm, which takes as inputs the sentences of textual modality.
We propose to conduct Fine-grained feature-level ALignment between ID-based Models and Pretrained Language Models(FLIP) for CTR prediction.
arXiv Detail & Related papers (2023-10-30T11:25:03Z) - Robust Representation Learning for Privacy-Preserving Machine Learning:
A Multi-Objective Autoencoder Approach [0.9831489366502302]
We propose a robust representation learning framework for privacy-preserving machine learning (ppML)
Our method centers on training autoencoders in a multi-objective manner and then concatenating the latent and learned features from the encoding part as the encoded form of our data.
With our proposed framework, we can share our data and use third party tools without being under the threat of revealing its original form.
arXiv Detail & Related papers (2023-09-08T16:41:25Z) - MASTER: Multi-task Pre-trained Bottlenecked Masked Autoencoders are
Better Dense Retrievers [140.0479479231558]
In this work, we aim to unify a variety of pre-training tasks into a multi-task pre-trained model, namely MASTER.
MASTER utilizes a shared-encoder multi-decoder architecture that can construct a representation bottleneck to compress the abundant semantic information across tasks into dense vectors.
arXiv Detail & Related papers (2022-12-15T13:57:07Z) - Multimodal Masked Autoencoders Learn Transferable Representations [127.35955819874063]
We propose a simple and scalable network architecture, the Multimodal Masked Autoencoder (M3AE)
M3AE learns a unified encoder for both vision and language data via masked token prediction.
We provide an empirical study of M3AE trained on a large-scale image-text dataset, and find that M3AE is able to learn generalizable representations that transfer well to downstream tasks.
arXiv Detail & Related papers (2022-05-27T19:09:42Z) - MDMMT-2: Multidomain Multimodal Transformer for Video Retrieval, One
More Step Towards Generalization [65.09758931804478]
Three different data sources are combined: weakly-supervised videos, crowd-labeled text-image pairs and text-video pairs.
A careful analysis of available pre-trained networks helps to choose the best prior-knowledge ones.
arXiv Detail & Related papers (2022-03-14T13:15:09Z) - Few-Shot Named Entity Recognition: A Comprehensive Study [92.40991050806544]
We investigate three schemes to improve the model generalization ability for few-shot settings.
We perform empirical comparisons on 10 public NER datasets with various proportions of labeled data.
We create new state-of-the-art results on both few-shot and training-free settings.
arXiv Detail & Related papers (2020-12-29T23:43:16Z) - Students Need More Attention: BERT-based AttentionModel for Small Data
with Application to AutomaticPatient Message Triage [65.7062363323781]
We propose a novel framework based on BioBERT (Bidirectional Representations from Transformers forBiomedical TextMining)
We introduce Label Embeddings for Self-Attention in each layer of BERT, which we call LESA-BERT, and (ii) by distilling LESA-BERT to smaller variants, we aim to reduce overfitting and model size when working on small datasets.
As an application, our framework is utilized to build a model for patient portal message triage that classifies the urgency of a message into three categories: non-urgent, medium and urgent.
arXiv Detail & Related papers (2020-06-22T03:39:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.