論文の概要: Generating physically-consistent high-resolution climate data with
hard-constrained neural networks
- arxiv url: http://arxiv.org/abs/2208.05424v1
- Date: Mon, 8 Aug 2022 16:54:01 GMT
- ステータス: 処理完了
- システム内更新日: 2022-08-11 13:24:35.245431
- Title: Generating physically-consistent high-resolution climate data with
hard-constrained neural networks
- Title(参考訳): ハード制約ニューラルネットワークを用いた物理的に一貫性のある高分解能気候データの生成
- Authors: Paula Harder, Qidong Yang, Venkatesh Ramesh, Prasanna Sattigeri, Alex
Hernandez-Garcia, Campbell Watson, Daniela Szwarcman, David Rolnick
- Abstract要約: 高解像度の気候と気象データは、気候適応と緩和に関する長期的な決定を知らせるために重要である。
予測モデルは計算コストによって制限され、しばしば粗い空間解像度で量を予測する。
ディープラーニングは、コンピュータビジョンにおける超解像領域からの手法を用いて、うまく適用されてきた。
- 参考スコア(独自算出の注目度): 28.730946396812197
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The availability of reliable, high-resolution climate and weather data is
important to inform long-term decisions on climate adaptation and mitigation
and to guide rapid responses to extreme events. Forecasting models are limited
by computational costs and therefore often predict quantities at a coarse
spatial resolution. Statistical downscaling can provide an efficient method of
upsampling low-resolution data. In this field, deep learning has been applied
successfully, often using methods from the super-resolution domain in computer
vision. Despite often achieving visually compelling results, such models often
violate conservation laws when predicting physical variables. In order to
conserve important physical quantities, we develop methods that guarantee
physical constraints are satisfied by a deep downscaling model while also
increasing their performance according to traditional metrics. We introduce two
ways of constraining the network: A renormalization layer added to the end of
the neural network and a successive approach that scales with increasing
upsampling factors. We show the applicability of our methods across different
popular architectures and upsampling factors using ERA5 reanalysis data.
- Abstract(参考訳): 信頼性の高い高解像度の気候データと気象データの提供は、気候適応と緩和に関する長期的な決定を通知し、極端な出来事に対する迅速な対応を導くために重要である。
予測モデルは計算コストによって制限されるため、しばしば粗い空間解像度で量を予測する。
統計的ダウンスケーリングは、低解像度データをアップサンプリングする効率的な方法を提供する。
この分野では、深層学習が成功し、しばしばコンピュータビジョンの超解像領域からの手法を用いている。
しばしば視覚的に説得力のある結果が得られたにもかかわらず、そのようなモデルは物理変数を予測するときに保存則に違反することが多い。
重要な物理量を保存するため,本研究では,物理制約を深度ダウンスケールモデルで満たすとともに,従来の測定基準に従って性能を向上する手法を開発した。
ニューラルネットワークの終端に付加された再正規化層と,アップサンプリング係数の増加に伴ってスケールする逐次アプローチという,ネットワークを制約する2つの方法を紹介する。
era5リアナリシスデータを用いて,さまざまなポピュラーアーキテクチャとアップサンプリング要因にまたがる手法の適用性を示す。
関連論文リスト
- Towards Kriging-informed Conditional Diffusion for Regional Sea-Level Data Downscaling [3.8178633709015446]
地球規模の気候モデルや衛星データから粗解射影を推定すると、下降問題は、より詳細な地域気候データを推定することを目的としている。
この問題は、気候変動による重大なリスクに対する効果的な適応、緩和、レジリエンスに社会的に不可欠である。
そこで本稿では, 空間的変動を抑えつつ, 微細な特徴を保ちながら, 空間的変動を捉えるためのKriging-informed Conditional Diffusion Probabilistic Model (Ki-CDPM)を提案する。
論文 参考訳(メタデータ) (2024-10-21T04:24:10Z) - Super Resolution On Global Weather Forecasts [0.1747623282473278]
グループは,グローバル気象予測の空間分解能を高めることにより,既存の深層学習に基づく予測手法の改善を目指している。
具体的には、大域的精度を1度から0.5度に高めることにより、グラフCast温度予測における超解像(SR)の実行に関心がある。
論文 参考訳(メタデータ) (2024-09-17T19:07:13Z) - Efficient Localized Adaptation of Neural Weather Forecasting: A Case Study in the MENA Region [62.09891513612252]
地域レベルのダウンストリームタスクに特化して、リミテッド・エリア・モデリングに焦点を合わせ、モデルをトレーニングします。
我々は,気象予報が水資源の管理,農業,極度の気象事象の影響軽減に重要であるという,気象学的課題からMENA地域を考察する。
本研究では,パラメータ効率のよい微調整手法,特にローランド適応(LoRA)とその変種を統合することの有効性を検証することを目的とした。
論文 参考訳(メタデータ) (2024-09-11T19:31:56Z) - Towards Physically Consistent Deep Learning For Climate Model Parameterizations [46.07009109585047]
パラメータ化は、気候予測において、系統的なエラーと大きな不確実性の主な原因である。
深層学習(DL)に基づくパラメータ化は、計算に高価で高解像度のショートシミュレーションのデータに基づいて訓練されており、気候モデルを改善するための大きな可能性を示している。
本稿では,DLに基づくパラメータ化のための効率的な教師付き学習フレームワークを提案する。
論文 参考訳(メタデータ) (2024-06-06T10:02:49Z) - FengWu-GHR: Learning the Kilometer-scale Medium-range Global Weather
Forecasting [56.73502043159699]
この研究は、データ駆動型世界天気予報モデルであるFengWu-GHRを、0.09$circ$水平解像度で実行した。
低解像度モデルから事前知識を継承することにより、MLベースの高解像度予測を操作するための扉を開く新しいアプローチを導入する。
2022年の天気予報は、FengWu-GHRがIFS-HRESよりも優れていることを示している。
論文 参考訳(メタデータ) (2024-01-28T13:23:25Z) - Learning Robust Precipitation Forecaster by Temporal Frame Interpolation [65.5045412005064]
本研究では,空間的不一致に対するレジリエンスを示す頑健な降水予測モデルを構築した。
提案手法は,textit4cast'23コンペティションの移行学習リーダーボードにおいて,textit1位を確保したモデルにおいて,予測精度が大幅に向上した。
論文 参考訳(メタデータ) (2023-11-30T08:22:08Z) - Deep Ensembles to Improve Uncertainty Quantification of Statistical
Downscaling Models under Climate Change Conditions [0.0]
統計的ダウンスケーリングモデルの不確実性定量化を改善するための簡単な方法としてディープアンサンブルを提案する。
ディープアンサンブルはより優れたリスク評価を可能にし、気候変動に対処するためのセクターのアプリケーションによって非常に要求される。
論文 参考訳(メタデータ) (2023-04-27T19:53:18Z) - An evaluation of deep learning models for predicting water depth
evolution in urban floods [59.31940764426359]
高空間分解能水深予測のための異なる深層学習モデルの比較を行った。
深層学習モデルはCADDIESセル-オートマタフラッドモデルによってシミュレーションされたデータを再現するために訓練される。
その結果,ディープラーニングモデルでは,他の手法に比べて誤差が低いことがわかった。
論文 参考訳(メタデータ) (2023-02-20T16:08:54Z) - Diffusion Models for High-Resolution Solar Forecasts [0.0]
スコアベース拡散モデルは、多くの依存変数上の確率分布をモデル化するための新しいアプローチを提供する。
本手法は,超解速気象予測のための拡散モデルから多くの試料を発生させることにより,日頭太陽照度予測に適用する。
論文 参考訳(メタデータ) (2023-02-01T01:32:25Z) - ClimaX: A foundation model for weather and climate [51.208269971019504]
ClimaXは気象と気候科学のディープラーニングモデルである。
気候データセットの自己教師型学習目標で事前トレーニングすることができる。
気候や気候の様々な問題に対処するために、微調整が可能である。
論文 参考訳(メタデータ) (2023-01-24T23:19:01Z) - Downscaling Extreme Rainfall Using Physical-Statistical Generative
Adversarial Learning [0.0]
我々は,降雨の詳細な空間的詳細を学習するために,物理と統計を生成フレームワークに組み込んだデータ駆動型ダウンスケーリング(スーパーレゾリューション)手法を開発した。
本手法は, 粗解(0.25円×0.25円)の気候モデルを高分解能(0.01円×0.01円)の降雨場に変換し, 不確実性を効果的に定量化する。
論文 参考訳(メタデータ) (2022-12-02T21:04:32Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。