論文の概要: CoditT5: Pretraining for Source Code and Natural Language Editing
- arxiv url: http://arxiv.org/abs/2208.05446v1
- Date: Wed, 10 Aug 2022 16:59:40 GMT
- ステータス: 処理完了
- システム内更新日: 2022-08-11 13:24:19.505795
- Title: CoditT5: Pretraining for Source Code and Natural Language Editing
- Title(参考訳): CoditT5: ソースコードと自然言語編集の準備
- Authors: Jiyang Zhang, Sheena Panthaplackel, Pengyu Nie, Junyi Jessy Li, Milos
Gligoric
- Abstract要約: CoditT5は、大量のソースコードと自然言語コメントで事前訓練された、ソフトウェア関連の編集タスクのための大規模な言語モデルである。
コメント更新、バグ修正、自動コードレビューなど、さまざまなダウンストリーム編集タスクを微調整します。
- 参考スコア(独自算出の注目度): 34.77621217370665
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Pretrained language models have been shown to be effective in many
software-related generation tasks; however, they are not well-suited for
editing tasks as they are not designed to reason about edits. To address this,
we propose a novel pretraining objective which explicitly models edits and use
it to build CoditT5, a large language model for software-related editing tasks
that is pretrained on large amounts of source code and natural language
comments. We fine-tune it on various downstream editing tasks, including
comment updating, bug fixing, and automated code review. By outperforming pure
generation-based models, we demonstrate the generalizability of our approach
and its suitability for editing tasks. We also show how a pure generation model
and our edit-based model can complement one another through simple reranking
strategies, with which we achieve state-of-the-art performance for the three
downstream editing tasks.
- Abstract(参考訳): 事前訓練された言語モデルは、多くのソフトウェア関連の生成タスクで有効であることが示されているが、編集を推論するように設計されていないため、編集タスクには適していない。
そこで本研究では,大量のソースコードと自然言語コメントを事前学習したソフトウェア関連編集タスクのための大規模言語モデルであるcoditt5を,編集を明示的にモデル化し,それを用いて構築する新しい事前学習目標を提案する。
コメント更新、バグ修正、自動コードレビューなど、さまざまなダウンストリーム編集タスクを微調整します。
純粋生成モデルよりも優れた性能を生かして,本手法の一般化可能性とタスクの編集性を示す。
また、純粋な生成モデルと編集ベースモデルが、単純なリグレード戦略によって相互に補完できることを示し、3つの下流編集タスクに対して最先端のパフォーマンスを実現する。
関連論文リスト
- A Reinforcement Learning-Based Automatic Video Editing Method Using Pre-trained Vision-Language Model [10.736207095604414]
まず、シーン固有の特徴を抽出する以前の作品とは異なり、事前学習された視覚言語モデル(VLM)を活用する。
また,RLをベースとした編集フレームワークを提案し,編集問題を定式化し,仮想エディタを訓練し,より優れた編集判断を行う。
論文 参考訳(メタデータ) (2024-11-07T18:20:28Z) - Should We Really Edit Language Models? On the Evaluation of Edited Language Models [15.63231238452797]
既存の編集手法は、一般的なベンチマークで必然的にパフォーマンスが低下する。
インストラクションチューニングされたモデルは、編集がより堅牢で、編集後の一般的な知識に対するパフォーマンス低下が少ない。
その結果,現在の編集手法は,言語モデル内の小規模な知識更新にのみ適していることがわかった。
論文 参考訳(メタデータ) (2024-10-24T14:36:48Z) - Model Editing Harms General Abilities of Large Language Models: Regularization to the Rescue [122.20016030723043]
大規模言語モデル(LLM)におけるモデル編集の副作用を評価する。
分析の結果,モデルの重みを過度に修正したモデル編集によって副作用が生じることが明らかとなった。
これを軽減するために、修正の重み付けを正規化するためにRECTというメソッドが提案されている。
論文 参考訳(メタデータ) (2024-01-09T18:03:15Z) - DUnE: Dataset for Unified Editing [3.7346004746366384]
自然言語文を編集するDUnE-an編集ベンチマークを導入する。
検索強化言語モデリングは、特殊な編集技術よりも優れていることを示す。
論文 参考訳(メタデータ) (2023-11-27T18:56:14Z) - Aging with GRACE: Lifelong Model Editing with Discrete Key-Value
Adaptors [53.819805242367345]
本稿では,展開モデルのストリーミングエラーにスポットフィックスを実装した生涯モデル編集手法であるGRACEを提案する。
GRACEはトレーニング済みモデルの潜在空間に新しいマッピングを記述し、モデルの重みを変更することなく、個別にローカルな編集のコードブックを作成する。
T5,BERT,GPTモデルを用いた実験では,非表示入力に一般化しつつ,編集および保持におけるGRACEの最先端性能を示す。
論文 参考訳(メタデータ) (2022-11-20T17:18:22Z) - Memory-Based Model Editing at Scale [102.28475739907498]
既存のモデルエディタは、編集対象のスコープを正確にモデル化するのに苦労する。
SERAC(Retrieval-Augmented Counterfactal Model)を用いた半パラメトリック編集を提案する。
SERACは、編集を明示的なメモリに格納し、必要に応じてベースモデルの予測を変更できるように、それらを推論することを学ぶ。
論文 参考訳(メタデータ) (2022-06-13T23:40:34Z) - Language Anisotropic Cross-Lingual Model Editing [61.51863835749279]
既存の作業はモノリンガルのシナリオのみを研究しており、言語間で同時に編集を行うための言語間転送能力が欠如している。
本稿では,並列コーパスを用いた一言語モデル編集手法を言語間シナリオに適用する枠組みを提案する。
本研究では,複数言語への編集の伝播における単言語ベースラインの失敗と,提案言語異方性モデル編集の有効性を実証的に示す。
論文 参考訳(メタデータ) (2022-05-25T11:38:12Z) - Learning to Model Editing Processes [98.11448946134894]
本稿では、反復的にシーケンスを生成するプロセス全体をモデル化し、編集プロセスのモデリングを提案する。
我々は、多段階編集の可能性を記述するための概念的枠組みを構築し、これらの多段階編集に基づいてシーケンスの生成モデルを学ぶことができるニューラルネットワークを記述する。
論文 参考訳(メタデータ) (2022-05-24T21:32:52Z) - Learning Structural Edits via Incremental Tree Transformations [102.64394890816178]
構造化データのインクリメンタルな編集(すなわち「構造的編集」)のための汎用モデルを提案する。
我々の編集者は、反復的にツリー編集(例えば、サブツリーの削除や追加)を生成し、部分的に編集されたデータに適用することを学びます。
提案したエディタを2つのソースコード編集データセットで評価した結果,提案する編集エンコーダでは,従来よりも精度が向上していることがわかった。
論文 参考訳(メタデータ) (2021-01-28T16:11:32Z) - A Structural Model for Contextual Code Changes [20.185486717922615]
部分的に編集されたコードスニペットが与えられた場合、私たちのゴールは、スニペットの残りの部分に対する編集の完了を予測することです。
提案モデルでは,最先端のシーケンシャルモデルよりも28%,編集コードの生成を学習する構文モデルよりも2倍高い精度を実現している。
論文 参考訳(メタデータ) (2020-05-27T07:16:19Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。