Modeling Diverse Chemical Reactions for Single-step Retrosynthesis via
Discrete Latent Variables
- URL: http://arxiv.org/abs/2208.05482v1
- Date: Wed, 10 Aug 2022 14:50:32 GMT
- Title: Modeling Diverse Chemical Reactions for Single-step Retrosynthesis via
Discrete Latent Variables
- Authors: Huarui He, Jie Wang, Yunfei Liu, Feng Wu
- Abstract summary: The goal of single-step retrosynthesis is to identify the possible reactants that lead to the synthesis of the target product in one reaction.
Existing sequence-based retrosynthetic methods treat the product-to-reactant retrosynthesis as a sequence-to-sequence translation problem.
We propose RetroDVCAE, which incorporates conditional variational autoencoders into single-step retrosynthesis and associates discrete latent variables with the generation process.
- Score: 43.900173434781905
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Single-step retrosynthesis is the cornerstone of retrosynthesis planning,
which is a crucial task for computer-aided drug discovery. The goal of
single-step retrosynthesis is to identify the possible reactants that lead to
the synthesis of the target product in one reaction. By representing organic
molecules as canonical strings, existing sequence-based retrosynthetic methods
treat the product-to-reactant retrosynthesis as a sequence-to-sequence
translation problem. However, most of them struggle to identify diverse
chemical reactions for a desired product due to the deterministic inference,
which contradicts the fact that many compounds can be synthesized through
various reaction types with different sets of reactants. In this work, we aim
to increase reaction diversity and generate various reactants using discrete
latent variables. We propose a novel sequence-based approach, namely
RetroDVCAE, which incorporates conditional variational autoencoders into
single-step retrosynthesis and associates discrete latent variables with the
generation process. Specifically, RetroDVCAE uses the Gumbel-Softmax
distribution to approximate the categorical distribution over potential
reactions and generates multiple sets of reactants with the variational
decoder. Experiments demonstrate that RetroDVCAE outperforms state-of-the-art
baselines on both benchmark dataset and homemade dataset. Both quantitative and
qualitative results show that RetroDVCAE can model the multi-modal distribution
over reaction types and produce diverse reactant candidates.
Related papers
- Learning Chemical Reaction Representation with Reactant-Product Alignment [50.28123475356234]
This paper introduces modelname, a novel chemical reaction representation learning model tailored for a variety of organic-reaction-related tasks.
By integrating atomic correspondence between reactants and products, our model discerns the molecular transformations that occur during the reaction, thereby enhancing the comprehension of the reaction mechanism.
We have designed an adapter structure to incorporate reaction conditions into the chemical reaction representation, allowing the model to handle diverse reaction conditions and adapt to various datasets and downstream tasks, e.g., reaction performance prediction.
arXiv Detail & Related papers (2024-11-26T17:41:44Z) - Retro-prob: Retrosynthetic Planning Based on a Probabilistic Model [5.044138778500218]
Retrosynthesis is a fundamental but challenging task in organic chemistry.
Given a target molecule, the goal of retrosynthesis is to find out a series of reactions which could be assembled into a synthetic route.
We propose a new retrosynthetic planning algorithm called retro-prob to maximize the successful synthesis probability of target molecules.
arXiv Detail & Related papers (2024-05-25T08:23:40Z) - Beyond the Typical: Modeling Rare Plausible Patterns in Chemical Reactions by Leveraging Sequential Mixture-of-Experts [42.9784548283531]
Generative models like Transformer and VAE have typically been employed to predict the reaction product.
We propose organizing the mapping space between reactants and electron redistribution patterns in a divide-and-conquer manner.
arXiv Detail & Related papers (2023-10-07T03:18:26Z) - Differentiable Programming of Chemical Reaction Networks [63.948465205530916]
Chemical reaction networks are one of the most fundamental computational substrates used by nature.
We study well-mixed single-chamber systems, as well as systems with multiple chambers separated by membranes.
We demonstrate that differentiable optimisation, combined with proper regularisation, can discover non-trivial sparse reaction networks.
arXiv Detail & Related papers (2023-02-06T11:41:14Z) - Root-aligned SMILES for Molecular Retrosynthesis Prediction [31.818364437526885]
Retrosynthesis prediction is a fundamental problem in organic synthesis, where the task is to discover precursor molecules that can be used to synthesize a target molecule.
A popular paradigm of existing computational retrosynthesis methods formulate retrosynthesis prediction as a sequence-to-sequence translation problem.
We propose the root-aligned SMILES(R-SMILES), which specifies a tightly aligned one-to-one mapping between the product and the reactant SMILES.
arXiv Detail & Related papers (2022-03-22T03:50:04Z) - Retroformer: Pushing the Limits of Interpretable End-to-end
Retrosynthesis Transformer [15.722719721123054]
Retrosynthesis prediction is one of the fundamental challenges in organic synthesis.
We propose Retroformer, a novel Transformer-based architecture for retrosynthesis prediction.
Retroformer reaches the new state-of-the-art accuracy for the end-to-end template-free retrosynthesis.
arXiv Detail & Related papers (2022-01-29T02:03:55Z) - Self-Improved Retrosynthetic Planning [66.5397931294144]
Retrosynthetic planning is a fundamental problem in chemistry for finding a pathway of reactions to synthesize a target molecule.
Recent search algorithms have shown promising results for solving this problem by using deep neural networks (DNNs)
We propose an end-to-end framework for directly training the DNNs towards generating reaction pathways with the desirable properties.
arXiv Detail & Related papers (2021-06-09T08:03:57Z) - RetCL: A Selection-based Approach for Retrosynthesis via Contrastive
Learning [107.64562550844146]
Retrosynthesis is an emerging research area of deep learning.
We propose a new approach that reformulating retrosynthesis into a selection problem of reactants from a candidate set of commercially available molecules.
For learning the score functions, we also propose a novel contrastive training scheme with hard negative mining.
arXiv Detail & Related papers (2021-05-03T12:47:57Z) - RetroXpert: Decompose Retrosynthesis Prediction like a Chemist [60.463900712314754]
We devise a novel template-free algorithm for automatic retrosynthetic expansion.
Our method disassembles retrosynthesis into two steps.
While outperforming the state-of-the-art baselines, our model also provides chemically reasonable interpretation.
arXiv Detail & Related papers (2020-11-04T04:35:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.