Learning Chemical Reaction Representation with Reactant-Product Alignment
- URL: http://arxiv.org/abs/2411.17629v1
- Date: Tue, 26 Nov 2024 17:41:44 GMT
- Title: Learning Chemical Reaction Representation with Reactant-Product Alignment
- Authors: Kaipeng Zeng, Xianbin Liu, Yu Zhang, Xiaokang Yang, Yaohui Jin, Yanyan Xu,
- Abstract summary: This paper introduces modelname, a novel chemical reaction representation learning model tailored for a variety of organic-reaction-related tasks.
By integrating atomic correspondence between reactants and products, our model discerns the molecular transformations that occur during the reaction, thereby enhancing the comprehension of the reaction mechanism.
We have designed an adapter structure to incorporate reaction conditions into the chemical reaction representation, allowing the model to handle diverse reaction conditions and adapt to various datasets and downstream tasks, e.g., reaction performance prediction.
- Score: 50.28123475356234
- License:
- Abstract: Organic synthesis stands as a cornerstone of chemical industry. The development of robust machine learning models to support tasks associated with organic reactions is of significant interest. However, current methods rely on hand-crafted features or direct adaptations of model architectures from other domains, which lacks feasibility as data scales increase or overlook the rich chemical information inherent in reactions. To address these issues, this paper introduces {\modelname}, a novel chemical reaction representation learning model tailored for a variety of organic-reaction-related tasks. By integrating atomic correspondence between reactants and products, our model discerns the molecular transformations that occur during the reaction, thereby enhancing the comprehension of the reaction mechanism. We have designed an adapter structure to incorporate reaction conditions into the chemical reaction representation, allowing the model to handle diverse reaction conditions and adapt to various datasets and downstream tasks, e.g., reaction performance prediction. Additionally, we introduce a reaction-center aware attention mechanism that enables the model to concentrate on key functional groups, thereby generating potent representations for chemical reactions. Our model has been evaluated on a range of downstream tasks, including reaction condition prediction, reaction yield prediction, and reaction selectivity prediction. Experimental results indicate that our model markedly outperforms existing chemical reaction representation learning architectures across all tasks. Notably, our model significantly outperforms all the baselines with up to 25\% (top-1) and 16\% (top-10) increased accuracy over the strongest baseline on USPTO\_CONDITION dataset for reaction condition prediction. We plan to open-source the code contingent upon the acceptance of the paper.
Related papers
- log-RRIM: Yield Prediction via Local-to-global Reaction Representation Learning and Interaction Modeling [6.310759215182946]
log-RRIM is an innovative graph transformer-based framework designed for predicting chemical reaction yields.
Our approach implements a unique local-to-global reaction representation learning strategy.
Its advanced modeling of reactant-reagent interactions and sensitivity to small molecular fragments make it a valuable tool for reaction planning and optimization in chemical synthesis.
arXiv Detail & Related papers (2024-10-20T18:35:56Z) - ReactAIvate: A Deep Learning Approach to Predicting Reaction Mechanisms and Unmasking Reactivity Hotspots [4.362338454684645]
We develop an interpretable attention-based GNN that achieved near-unity and 96% accuracy for reaction step classification.
Our model adeptly identifies key atom(s) even from out-of-distribution classes.
This generalizabilty allows for the inclusion of new reaction types in a modular fashion, thus will be of value to experts for understanding the reactivity of new molecules.
arXiv Detail & Related papers (2024-07-14T05:53:18Z) - Beyond Major Product Prediction: Reproducing Reaction Mechanisms with
Machine Learning Models Trained on a Large-Scale Mechanistic Dataset [10.968137261042715]
Mechanistic understanding of organic reactions can facilitate reaction development, impurity prediction, and in principle, reaction discovery.
While several machine learning models have sought to address the task of predicting reaction products, their extension to predicting reaction mechanisms has been impeded by the lack of a corresponding mechanistic dataset.
We construct such a dataset by imputing intermediates between experimentally reported reactants and products using expert reaction templates and train several machine learning models on the resulting dataset of 5,184,184 elementary steps.
arXiv Detail & Related papers (2024-03-07T15:26:23Z) - Retrosynthesis prediction enhanced by in-silico reaction data
augmentation [66.5643280109899]
We present RetroWISE, a framework that employs a base model inferred from real paired data to perform in-silico reaction generation and augmentation.
On three benchmark datasets, RetroWISE achieves the best overall performance against state-of-the-art models.
arXiv Detail & Related papers (2024-01-31T07:40:37Z) - AI for Interpretable Chemistry: Predicting Radical Mechanistic Pathways
via Contrastive Learning [45.379791270351184]
RMechRP is a new deep learning-based reaction predictor system.
We develop and train models using RMechDB, a public database of radical reactions.
Our results demonstrate the effectiveness of RMechRP in providing accurate and interpretable predictions.
arXiv Detail & Related papers (2023-11-02T09:47:27Z) - Rxn Hypergraph: a Hypergraph Attention Model for Chemical Reaction
Representation [70.97737157902947]
There is currently no universal and widely adopted method for robustly representing chemical reactions.
Here we exploit graph-based representations of molecular structures to develop and test a hypergraph attention neural network approach.
We evaluate this hypergraph representation in three experiments using three independent data sets of chemical reactions.
arXiv Detail & Related papers (2022-01-02T12:33:10Z) - Mapping the Space of Chemical Reactions Using Attention-Based Neural
Networks [0.3848364262836075]
This work shows that transformer-based models can infer reaction classes from non-annotated, simple text-based representations of chemical reactions.
Our best model reaches a classification accuracy of 98.2%.
The insights into chemical reaction space enabled by our learned fingerprints are illustrated by an interactive reaction atlas.
arXiv Detail & Related papers (2020-12-09T10:25:30Z) - Graph Neural Networks for the Prediction of Substrate-Specific Organic
Reaction Conditions [79.45090959869124]
We present a systematic investigation using graph neural networks (GNNs) to model organic chemical reactions.
We evaluate seven different GNN architectures for classification tasks pertaining to the identification of experimental reagents and conditions.
arXiv Detail & Related papers (2020-07-08T17:21:00Z) - Retrosynthesis Prediction with Conditional Graph Logic Network [118.70437805407728]
Computer-aided retrosynthesis is finding renewed interest from both chemistry and computer science communities.
We propose a new approach to this task using the Conditional Graph Logic Network, a conditional graphical model built upon graph neural networks.
arXiv Detail & Related papers (2020-01-06T05:36:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.