論文の概要: MultiMatch: Multi-task Learning for Semi-supervised Domain Generalization
- arxiv url: http://arxiv.org/abs/2208.05853v3
- Date: Mon, 29 Apr 2024 06:32:01 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-01 03:47:11.334574
- Title: MultiMatch: Multi-task Learning for Semi-supervised Domain Generalization
- Title(参考訳): MultiMatch: 半教師付きドメイン一般化のためのマルチタスク学習
- Authors: Lei Qi, Hongpeng Yang, Yinghuan Shi, Xin Geng,
- Abstract要約: 我々は、各ソースドメインにいくつかのラベル情報がある半教師付きドメイン一般化タスクの解決に頼っている。
我々は、MultiMatchを提案し、FixMatchをマルチタスク学習フレームワークに拡張し、SSDGのための高品質な擬似ラベルを生成する。
提案手法の有効性を検証し,いくつかのベンチマークDGデータセット上で既存の半教師付き手法とSSDG法より優れていることを示す。
- 参考スコア(独自算出の注目度): 55.06956781674986
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Domain generalization (DG) aims at learning a model on source domains to well generalize on the unseen target domain. Although it has achieved great success, most of existing methods require the label information for all training samples in source domains, which is time-consuming and expensive in the real-world application. In this paper, we resort to solving the semi-supervised domain generalization (SSDG) task, where there are a few label information in each source domain. To address the task, we first analyze the theory of the multi-domain learning, which highlights that 1) mitigating the impact of domain gap and 2) exploiting all samples to train the model can effectively reduce the generalization error in each source domain so as to improve the quality of pseudo-labels. According to the analysis, we propose MultiMatch, i.e., extending FixMatch to the multi-task learning framework, producing the high-quality pseudo-label for SSDG. To be specific, we consider each training domain as a single task (i.e., local task) and combine all training domains together (i.e., global task) to train an extra task for the unseen test domain. In the multi-task framework, we utilize the independent BN and classifier for each task, which can effectively alleviate the interference from different domains during pseudo-labeling. Also, most of parameters in the framework are shared, which can be trained by all training samples sufficiently. Moreover, to further boost the pseudo-label accuracy and the model's generalization, we fuse the predictions from the global task and local task during training and testing, respectively. A series of experiments validate the effectiveness of the proposed method, and it outperforms the existing semi-supervised methods and the SSDG method on several benchmark DG datasets.
- Abstract(参考訳): ドメイン一般化(DG)は、ソースドメインのモデルを学習して、見えないターゲットドメインをうまく一般化することを目的としている。
これは大きな成功を収めたものの、既存の手法のほとんどは、実世界のアプリケーションでは時間がかかり高価であるソースドメインの全トレーニングサンプルのラベル情報を必要とする。
本稿では,各ソースドメインにいくつかのラベル情報が存在する半教師付きドメイン一般化(SSDG)タスクを解決する。
この課題に対処するために、まずマルチドメイン学習の理論を分析し、それを強調する。
1【領域ギャップの影響緩和】
2) モデルトレーニングに全サンプルを活用することで,各ソース領域の一般化誤差を効果的に低減し,擬似ラベルの品質を向上させることができる。
本分析では,FixMatchをマルチタスク学習フレームワークに拡張し,SSDGのための高品質な擬似ラベルを生成する。
具体的には、各トレーニングドメインを単一のタスク(ローカルタスク)とみなし、すべてのトレーニングドメイン(グローバルタスク)を組み合わせて、目に見えないテストドメインのための追加タスクをトレーニングする。
マルチタスクフレームワークでは,個別のBNと分類器を各タスクに利用し,擬似ラベル処理中に異なるドメインからの干渉を効果的に緩和する。
また、フレームワーク内のほとんどのパラメータは共有されており、すべてのトレーニングサンプルで十分にトレーニングすることができる。
さらに、擬似ラベル精度とモデルの一般化をさらに高めるために、トレーニングおよびテスト中のグローバルタスクとローカルタスクから予測を融合する。
提案手法の有効性を検証し,いくつかのベンチマークDGデータセット上で既存の半教師付き手法とSSDG法より優れていることを示す。
関連論文リスト
- DG-PIC: Domain Generalized Point-In-Context Learning for Point Cloud Understanding [41.49771026674969]
本稿では,ドメイン一般化ポイントクラウド理解のための統一モデルにおいて,複数のドメインと複数のタスクを扱う,新しい,実用的なマルチドメインマルチタスク設定を提案する。
我々のDG-PICは、テスト中にモデル更新を一切必要とせず、見えないドメインと複数のタスク、例えば、ポイントクラウドの再構築、デノナイズ、登録を1つの統一モデルで処理できる。
論文 参考訳(メタデータ) (2024-07-11T18:21:40Z) - NormAUG: Normalization-guided Augmentation for Domain Generalization [60.159546669021346]
ディープラーニングのためのNormAUG(Normalization-guided Augmentation)と呼ばれるシンプルで効果的な手法を提案する。
本手法は特徴レベルで多様な情報を導入し,主経路の一般化を改善する。
テスト段階では、アンサンブル戦略を利用して、モデルの補助経路からの予測を組み合わせ、さらなる性能向上を図る。
論文 参考訳(メタデータ) (2023-07-25T13:35:45Z) - Meta-DMoE: Adapting to Domain Shift by Meta-Distillation from
Mixture-of-Experts [33.21435044949033]
既存のほとんどのメソッドは、単一のモデルを使って複数のソースドメインでトレーニングを行います。
本稿では,知識蒸留プロセスとして定式化された非教師なし試験時間適応のための新しいフレームワークを提案する。
論文 参考訳(メタデータ) (2022-10-08T02:28:10Z) - Improving Multi-Domain Generalization through Domain Re-labeling [31.636953426159224]
本稿では,事前特定ドメインラベルと一般化性能の関連性について検討する。
マルチドメイン一般化のための一般的なアプローチであるMulDEnsを導入し,ERMをベースとした深層アンサンブルバックボーンを用いた。
我々は、MulDEnsがデータセット固有の拡張戦略やトレーニングプロセスの調整を必要としないことを示す。
論文 参考訳(メタデータ) (2021-12-17T23:21:50Z) - META: Mimicking Embedding via oThers' Aggregation for Generalizable
Person Re-identification [68.39849081353704]
Domain Generalizable (DG) Person Re-identification (ReID)は、トレーニング時に対象のドメインデータにアクセスすることなく、見えないドメインをまたいでテストすることを目的としている。
本稿では,DG ReID のための OThers' Aggregation (META) を用いた Mimicking Embedding という新しい手法を提案する。
論文 参考訳(メタデータ) (2021-12-16T08:06:50Z) - Better Pseudo-label: Joint Domain-aware Label and Dual-classifier for
Semi-supervised Domain Generalization [26.255457629490135]
本稿では,高品質な擬似ラベルを生成するために,共同ドメイン認識ラベルと二重分類器を用いた新しいフレームワークを提案する。
ドメインシフト中の正確な擬似ラベルを予測するために、ドメイン対応擬似ラベルモジュールを開発する。
また、一般化と擬似ラベルの矛盾した目標を考えると、訓練過程において擬似ラベルとドメインの一般化を独立に行うために二重分類器を用いる。
論文 参考訳(メタデータ) (2021-10-10T15:17:27Z) - Multi-Target Domain Adaptation with Collaborative Consistency Learning [105.7615147382486]
教師なしマルチターゲットドメイン適応を実現するための協調学習フレームワークを提案する。
提案手法は,ラベル付きソースドメインとラベルなしターゲットドメインの両方に含まれるリッチな構造化情報を効果的に利用することができる。
論文 参考訳(メタデータ) (2021-06-07T08:36:20Z) - Curriculum Graph Co-Teaching for Multi-Target Domain Adaptation [78.28390172958643]
マルチターゲットドメイン適応(MTDA)における複数のドメインシフトを軽減するのに役立つ2つの重要な側面を同定する。
本論文では,二重分類器ヘッドを用いたCGCT(Curriculum Graph Co-Teaching)を提案する。そのうちの1つがグラフ畳み込みネットワーク(GCN)である。
ドメインラベルが利用可能になると、まずより簡単なターゲットドメインに適応し、続いて難しいドメインに適応する逐次適応戦略であるDomain-Aware Curriculum Learning (DCL)を提案する。
論文 参考訳(メタデータ) (2021-04-01T23:41:41Z) - Alleviating Semantic-level Shift: A Semi-supervised Domain Adaptation
Method for Semantic Segmentation [97.8552697905657]
このタスクの重要な課題は、ソースとターゲットドメイン間のデータ分散の相違を緩和する方法である。
本稿では,グローバルな視点とローカルな視点の両方から分布の整合性を促進できるASS(Alleviating Semantic-level Shift)を提案する。
GTA5、Cityscapes、Synthia、Cityscapesの2つのドメイン適応タスクにASSを適用します。
論文 参考訳(メタデータ) (2020-04-02T03:25:05Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。