論文の概要: WeightMom: Learning Sparse Networks using Iterative Momentum-based
pruning
- arxiv url: http://arxiv.org/abs/2208.05970v1
- Date: Thu, 11 Aug 2022 07:13:59 GMT
- ステータス: 処理完了
- システム内更新日: 2022-08-15 13:07:18.916112
- Title: WeightMom: Learning Sparse Networks using Iterative Momentum-based
pruning
- Title(参考訳): WeightMom:反復モーメンタムプルーニングによるスパースネットワークの学習
- Authors: Elvis Johnson, Xiaochen Tang and Sriramacharyulu Samudrala
- Abstract要約: 本稿では,前回の繰り返しの運動量に基づいて徐々に重みを刈り取る,重みに基づくプルーニング手法を提案する。
我々は,CIFAR-10やCIFAR-100といった画像分類データセットを用いて,AlexNet,VGG16,ResNet50などのネットワークに対するアプローチを評価する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deep Neural Networks have been used in a wide variety of applications with
significant success. However, their highly complex nature owing to comprising
millions of parameters has lead to problems during deployment in pipelines with
low latency requirements. As a result, it is more desirable to obtain
lightweight neural networks which have the same performance during inference
time. In this work, we propose a weight based pruning approach in which the
weights are pruned gradually based on their momentum of the previous
iterations. Each layer of the neural network is assigned an importance value
based on their relative sparsity, followed by the magnitude of the weight in
the previous iterations. We evaluate our approach on networks such as AlexNet,
VGG16 and ResNet50 with image classification datasets such as CIFAR-10 and
CIFAR-100. We found that the results outperformed the previous approaches with
respect to accuracy and compression ratio. Our method is able to obtain a
compression of 15% for the same degradation in accuracy on both the datasets.
- Abstract(参考訳): ディープニューラルネットワークは様々なアプリケーションで使われており、大きな成功を収めている。
しかしながら、数百万のパラメータを構成できるという非常に複雑な性質は、レイテンシ要件の少ないパイプラインのデプロイメント中に問題を引き起こしている。
その結果、推論時間中に同じ性能の軽量ニューラルネットワークを得るのがより望ましい。
本研究では,前回の繰り返しの運動量に基づいて徐々に重みを刈り取る,重みに基づくプルーニング手法を提案する。
ニューラルネットワークの各レイヤは、相対的な疎度に基づいて重要値が割り当てられ、その後、前のイテレーションにおける重みの大きさが割り当てられる。
我々は,CIFAR-10やCIFAR-100といった画像分類データセットを用いて,AlexNet,VGG16,ResNet50などのネットワークに対するアプローチを評価する。
その結果,従来の手法よりも精度と圧縮比が優れていた。
本手法では, 両データセットの精度の同じ劣化に対して, 15%の圧縮が得られる。
関連論文リスト
- Concurrent Training and Layer Pruning of Deep Neural Networks [0.0]
トレーニングの初期段階において、ニューラルネットワークの無関係な層を特定し、排除できるアルゴリズムを提案する。
本研究では,非線形区間を切断した後にネットワークを流れる情報の流れを,非線形ネットワーク区間の周囲の残差接続を用いた構造を用いる。
論文 参考訳(メタデータ) (2024-06-06T23:19:57Z) - Post-Training Quantization for Re-parameterization via Coarse & Fine
Weight Splitting [13.270381125055275]
本稿では,重みの量子化誤差を低減するために,粗大かつ微細な重み分割法(CFWS)を提案する。
我々は、活性化のための最適な量子化尺度を決定するために改良されたKLメトリックを開発した。
例えば、量子化されたRepVGG-A1モデルは、わずか0.3%の精度損失を示す。
論文 参考訳(メタデータ) (2023-12-17T02:31:20Z) - An Experimental Study of the Impact of Pre-training on the Pruning of a
Convolutional Neural Network [0.0]
近年、ディープニューラルネットワークは様々なアプリケーション領域で広く成功している。
ディープニューラルネットワークは通常、ネットワークの重みに対応する多数のパラメータを含む。
プルーニング法は特に、無関係な重みを識別して取り除くことにより、パラメータセットのサイズを減らそうとしている。
論文 参考訳(メタデータ) (2021-12-15T16:02:15Z) - Compact representations of convolutional neural networks via weight
pruning and quantization [63.417651529192014]
本稿では、音源符号化に基づく畳み込みニューラルネットワーク(CNN)の新しいストレージフォーマットを提案し、重み付けと量子化の両方を活用する。
我々は、全接続層で0.6%、ネットワーク全体で5.44%のスペース占有率を削減し、最低でもベースラインと同じくらいの競争力を発揮する。
論文 参考訳(メタデータ) (2021-08-28T20:39:54Z) - Multiplicative Reweighting for Robust Neural Network Optimization [51.67267839555836]
MW(multiplicative weight)更新は、専門家のアドバイスにより、適度なデータ破損に対して堅牢である。
MWはラベルノイズの存在下でニューラルネットワークの精度を向上することを示す。
論文 参考訳(メタデータ) (2021-02-24T10:40:25Z) - Training Sparse Neural Networks using Compressed Sensing [13.84396596420605]
本研究では,プレニングとトレーニングを1ステップに組み合わせた圧縮センシングに基づく新しい手法の開発と試験を行う。
具体的には、トレーニング中の重みを適応的に重み付けした$ell1$のペナルティを利用して、スパースニューラルネットワークをトレーニングするために、正規化二重平均化(RDA)アルゴリズムの一般化と組み合わせる。
論文 参考訳(メタデータ) (2020-08-21T19:35:54Z) - Neural networks with late-phase weights [66.72777753269658]
学習後期に重みのサブセットを組み込むことで,SGDの解をさらに改善できることを示す。
学習の終わりに、重み空間における空間平均を取ることにより、1つのモデルを取得する。
論文 参考訳(メタデータ) (2020-07-25T13:23:37Z) - ESPN: Extremely Sparse Pruned Networks [50.436905934791035]
簡単な反復マスク探索法により,非常に深いネットワークの最先端の圧縮を実現することができることを示す。
本アルゴリズムは,シングルショット・ネットワーク・プルーニング法とロッテ・ティケット方式のハイブリッド・アプローチを示す。
論文 参考訳(メタデータ) (2020-06-28T23:09:27Z) - Revisiting Initialization of Neural Networks [72.24615341588846]
ヘッセン行列のノルムを近似し, 制御することにより, 層間における重みのグローバルな曲率を厳密に推定する。
Word2Vec と MNIST/CIFAR 画像分類タスクの実験により,Hessian ノルムの追跡が診断ツールとして有用であることが確認された。
論文 参考訳(メタデータ) (2020-04-20T18:12:56Z) - Distance-Based Regularisation of Deep Networks for Fine-Tuning [116.71288796019809]
我々は,仮説クラスを,初期訓練前の重みを中心にした小さな球面に制約するアルゴリズムを開発した。
実験的な評価は、我々のアルゴリズムがうまく機能していることを示し、理論的な結果を裏付けるものである。
論文 参考訳(メタデータ) (2020-02-19T16:00:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。