Two-person Graph Convolutional Network for Skeleton-based Human
Interaction Recognition
- URL: http://arxiv.org/abs/2208.06174v1
- Date: Fri, 12 Aug 2022 08:50:15 GMT
- Title: Two-person Graph Convolutional Network for Skeleton-based Human
Interaction Recognition
- Authors: Zhengcen Li, Yueran Li, Linlin Tang, Tong Zhang and Jingyong Su
- Abstract summary: Graph Convolutional Network (GCN) outperforms previous methods in the skeleton-based human action recognition area.
We introduce a novel unified two-person graph representing spatial interaction correlations between joints.
Experiments show accuracy improvements in both interactions and individual actions when utilizing the proposed two-person graph topology.
- Score: 11.650290790796323
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Graph Convolutional Network (GCN) outperforms previous methods in the
skeleton-based human action recognition area, including human-human interaction
recognition task. However, when dealing with interaction sequences, current
GCN-based methods simply split the two-person skeleton into two discrete
sequences and perform graph convolution separately in the manner of
single-person action classification. Such operation ignores rich interactive
information and hinders effective spatial relationship modeling for semantic
pattern learning. To overcome the above shortcoming, we introduce a novel
unified two-person graph representing spatial interaction correlations between
joints. Also, a properly designed graph labeling strategy is proposed to let
our GCN model learn discriminant spatial-temporal interactive features.
Experiments show accuracy improvements in both interactions and individual
actions when utilizing the proposed two-person graph topology. Finally, we
propose a Two-person Graph Convolutional Network (2P-GCN). The proposed 2P-GCN
achieves state-of-the-art results on four benchmarks of three interaction
datasets, SBU, NTU-RGB+D, and NTU-RGB+D 120.
Related papers
- Learning Mutual Excitation for Hand-to-Hand and Human-to-Human
Interaction Recognition [22.538114033191313]
We propose a mutual excitation graph convolutional network (me-GCN) by stacking mutual excitation graph convolution layers.
Me-GC learns mutual information in each layer and each stage of graph convolution operations.
Our proposed me-GC outperforms state-of-the-art GCN-based and Transformer-based methods.
arXiv Detail & Related papers (2024-02-04T10:00:00Z) - DD-GCN: Directed Diffusion Graph Convolutional Network for
Skeleton-based Human Action Recognition [10.115283931959855]
Graphal Networks (GCNs) have been widely used in skeleton-based human action recognition.
In this paper, we construct directed diffusion for action modeling and introduce the activity partition strategy.
We also present to embed synchronized-temporal-temporal semantics.
arXiv Detail & Related papers (2023-08-24T01:53:59Z) - Skeletal Human Action Recognition using Hybrid Attention based Graph
Convolutional Network [3.261599248682793]
We propose a new adaptive spatial attention layer that extends local attention map to global based on relative distance and relative angle information.
We design a new initial graph adjacency matrix that connects head, hands and feet, which shows visible improvement in terms of action recognition accuracy.
The proposed model is evaluated on two large-scale and challenging datasets in the field of human activities in daily life.
arXiv Detail & Related papers (2022-07-12T12:22:21Z) - Discovering the Representation Bottleneck of Graph Neural Networks from
Multi-order Interactions [51.597480162777074]
Graph neural networks (GNNs) rely on the message passing paradigm to propagate node features and build interactions.
Recent works point out that different graph learning tasks require different ranges of interactions between nodes.
We study two common graph construction methods in scientific domains, i.e., emphK-nearest neighbor (KNN) graphs and emphfully-connected (FC) graphs.
arXiv Detail & Related papers (2022-05-15T11:38:14Z) - Spatio-Temporal Joint Graph Convolutional Networks for Traffic
Forecasting [75.10017445699532]
Recent have shifted their focus towards formulating traffic forecasting as atemporal graph modeling problem.
We propose a novel approach for accurate traffic forecasting on road networks over multiple future time steps.
arXiv Detail & Related papers (2021-11-25T08:45:14Z) - Learning Multi-Granular Spatio-Temporal Graph Network for Skeleton-based
Action Recognition [49.163326827954656]
We propose a novel multi-granular-temporal graph network for skeleton-based action classification.
We develop a dual-head graph network consisting of two inter-leaved branches, which enables us to extract at least two-temporal resolutions.
We conduct extensive experiments on three large-scale datasets.
arXiv Detail & Related papers (2021-08-10T09:25:07Z) - Multi Scale Temporal Graph Networks For Skeleton-based Action
Recognition [5.970574258839858]
Graph convolutional networks (GCNs) can effectively capture the features of related nodes and improve the performance of the model.
Existing methods based on GCNs have two problems. First, the consistency of temporal and spatial features is ignored for extracting features node by node and frame by frame.
We propose a novel model called Temporal Graph Networks (TGN) for action recognition.
arXiv Detail & Related papers (2020-12-05T08:08:25Z) - CatGCN: Graph Convolutional Networks with Categorical Node Features [99.555850712725]
CatGCN is tailored for graph learning when the node features are categorical.
We train CatGCN in an end-to-end fashion and demonstrate it on semi-supervised node classification.
arXiv Detail & Related papers (2020-09-11T09:25:17Z) - DRG: Dual Relation Graph for Human-Object Interaction Detection [65.50707710054141]
We tackle the challenging problem of human-object interaction (HOI) detection.
Existing methods either recognize the interaction of each human-object pair in isolation or perform joint inference based on complex appearance-based features.
In this paper, we leverage an abstract spatial-semantic representation to describe each human-object pair and aggregate the contextual information of the scene via a dual relation graph.
arXiv Detail & Related papers (2020-08-26T17:59:40Z) - A Graph-based Interactive Reasoning for Human-Object Interaction
Detection [71.50535113279551]
We present a novel graph-based interactive reasoning model called Interactive Graph (abbr. in-Graph) to infer HOIs.
We construct a new framework to assemble in-Graph models for detecting HOIs, namely in-GraphNet.
Our framework is end-to-end trainable and free from costly annotations like human pose.
arXiv Detail & Related papers (2020-07-14T09:29:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.