DD-GCN: Directed Diffusion Graph Convolutional Network for
Skeleton-based Human Action Recognition
- URL: http://arxiv.org/abs/2308.12501v1
- Date: Thu, 24 Aug 2023 01:53:59 GMT
- Title: DD-GCN: Directed Diffusion Graph Convolutional Network for
Skeleton-based Human Action Recognition
- Authors: Chang Li, Qian Huang, Yingchi Mao
- Abstract summary: Graphal Networks (GCNs) have been widely used in skeleton-based human action recognition.
In this paper, we construct directed diffusion for action modeling and introduce the activity partition strategy.
We also present to embed synchronized-temporal-temporal semantics.
- Score: 10.115283931959855
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Graph Convolutional Networks (GCNs) have been widely used in skeleton-based
human action recognition. In GCN-based methods, the spatio-temporal graph is
fundamental for capturing motion patterns. However, existing approaches ignore
the physical dependency and synchronized spatio-temporal correlations between
joints, which limits the representation capability of GCNs. To solve these
problems, we construct the directed diffusion graph for action modeling and
introduce the activity partition strategy to optimize the weight sharing
mechanism of graph convolution kernels. In addition, we present the
spatio-temporal synchronization encoder to embed synchronized spatio-temporal
semantics. Finally, we propose Directed Diffusion Graph Convolutional Network
(DD-GCN) for action recognition, and the experiments on three public datasets:
NTU-RGB+D, NTU-RGB+D 120, and NW-UCLA, demonstrate the state-of-the-art
performance of our method.
Related papers
- Dynamic Dense Graph Convolutional Network for Skeleton-based Human
Motion Prediction [14.825185477750479]
This paper presents a Dynamic Dense Graph Convolutional Network (DD-GCN) which constructs a dense graph and implements an integrated dynamic message passing.
Based on the dense graph, we propose a dynamic message passing framework that learns dynamically from data to generate distinctive messages.
Experiments on benchmark Human 3.6M and CMU Mocap datasets verify the effectiveness of our DD-GCN.
arXiv Detail & Related papers (2023-11-29T07:25:49Z) - DG-STGCN: Dynamic Spatial-Temporal Modeling for Skeleton-based Action
Recognition [77.87404524458809]
We propose a new framework for skeleton-based action recognition, namely Dynamic Group Spatio-Temporal GCN (DG-STGCN)
It consists of two modules, DG-GCN and DG-TCN, respectively, for spatial and temporal modeling.
DG-STGCN consistently outperforms state-of-the-art methods, often by a notable margin.
arXiv Detail & Related papers (2022-10-12T03:17:37Z) - Two-person Graph Convolutional Network for Skeleton-based Human
Interaction Recognition [11.650290790796323]
Graph Convolutional Network (GCN) outperforms previous methods in the skeleton-based human action recognition area.
We introduce a novel unified two-person graph representing spatial interaction correlations between joints.
Experiments show accuracy improvements in both interactions and individual actions when utilizing the proposed two-person graph topology.
arXiv Detail & Related papers (2022-08-12T08:50:15Z) - SpatioTemporal Focus for Skeleton-based Action Recognition [66.8571926307011]
Graph convolutional networks (GCNs) are widely adopted in skeleton-based action recognition.
We argue that the performance of recent proposed skeleton-based action recognition methods is limited by the following factors.
Inspired by the recent attention mechanism, we propose a multi-grain contextual focus module, termed MCF, to capture the action associated relation information.
arXiv Detail & Related papers (2022-03-31T02:45:24Z) - Spatio-Temporal Joint Graph Convolutional Networks for Traffic
Forecasting [75.10017445699532]
Recent have shifted their focus towards formulating traffic forecasting as atemporal graph modeling problem.
We propose a novel approach for accurate traffic forecasting on road networks over multiple future time steps.
arXiv Detail & Related papers (2021-11-25T08:45:14Z) - Learning Multi-Granular Spatio-Temporal Graph Network for Skeleton-based
Action Recognition [49.163326827954656]
We propose a novel multi-granular-temporal graph network for skeleton-based action classification.
We develop a dual-head graph network consisting of two inter-leaved branches, which enables us to extract at least two-temporal resolutions.
We conduct extensive experiments on three large-scale datasets.
arXiv Detail & Related papers (2021-08-10T09:25:07Z) - Multi Scale Temporal Graph Networks For Skeleton-based Action
Recognition [5.970574258839858]
Graph convolutional networks (GCNs) can effectively capture the features of related nodes and improve the performance of the model.
Existing methods based on GCNs have two problems. First, the consistency of temporal and spatial features is ignored for extracting features node by node and frame by frame.
We propose a novel model called Temporal Graph Networks (TGN) for action recognition.
arXiv Detail & Related papers (2020-12-05T08:08:25Z) - On the spatial attention in Spatio-Temporal Graph Convolutional Networks
for skeleton-based human action recognition [97.14064057840089]
Graphal networks (GCNs) promising performance in skeleton-based human action recognition by modeling a sequence of skeletons as a graph.
Most of the recently proposed G-temporal-based methods improve the performance by learning the graph structure at each layer of the network.
arXiv Detail & Related papers (2020-11-07T19:03:04Z) - Disentangling and Unifying Graph Convolutions for Skeleton-Based Action
Recognition [79.33539539956186]
We propose a simple method to disentangle multi-scale graph convolutions and a unified spatial-temporal graph convolutional operator named G3D.
By coupling these proposals, we develop a powerful feature extractor named MS-G3D based on which our model outperforms previous state-of-the-art methods on three large-scale datasets.
arXiv Detail & Related papers (2020-03-31T11:28:25Z) - Feedback Graph Convolutional Network for Skeleton-based Action
Recognition [38.782491442635205]
We propose a novel network, named Feedback Graph Convolutional Network (FGCN)
This is the first work that introduces the feedback mechanism into GCNs and action recognition.
It achieves the state-of-the-art performance on three datasets.
arXiv Detail & Related papers (2020-03-17T07:20:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.