論文の概要: Smart caching in a Data Lake for High Energy Physics analysis
- arxiv url: http://arxiv.org/abs/2208.06437v1
- Date: Tue, 2 Aug 2022 13:32:12 GMT
- ステータス: 処理完了
- システム内更新日: 2022-08-28 22:27:56.259083
- Title: Smart caching in a Data Lake for High Energy Physics analysis
- Title(参考訳): 高エネルギー物理解析のためのデータレイクにおけるスマートキャッシング
- Authors: Tommaso Tedeschi, Diego Ciangottini, Marco Baioletti, Valentina
Poggioni, Daniele Spiga, Loriano Storchi, Mirco Tracolli
- Abstract要約: この研究は、高エネルギー物理学分野におけるデータレイクのインフラにおけるデータキャッシュ管理に焦点を当てている。
我々は、ユーザエクスペリエンスを改善し、インフラのメンテナンスコストを抑えるために、強化学習技術に基づく自律的な手法を提案している。
- 参考スコア(独自算出の注目度): 1.3854111346209868
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The continuous growth of data production in almost all scientific areas
raises new problems in data access and management, especially in a scenario
where the end-users, as well as the resources that they can access, are
worldwide distributed. This work is focused on the data caching management in a
Data Lake infrastructure in the context of the High Energy Physics field. We
are proposing an autonomous method, based on Reinforcement Learning techniques,
to improve the user experience and to contain the maintenance costs of the
infrastructure.
- Abstract(参考訳): ほぼすべての科学分野におけるデータ生産の継続的な成長は、特にエンドユーザと彼らがアクセス可能なリソースが世界中に分散しているシナリオにおいて、データアクセスと管理の新たな問題を引き起こす。
本研究は,高エネルギー物理分野におけるデータレイクインフラストラクチャにおけるデータキャッシング管理に焦点を当てている。
我々は,強化学習技術に基づく自律的手法を提案し,ユーザエクスペリエンスの向上とインフラストラクチャのメンテナンスコストの削減を図る。
関連論文リスト
- Data Management For Training Large Language Models: A Survey [64.18200694790787]
大規模言語モデル(LLM)のトレーニングにおいて、データは基本的な役割を果たす
本調査は,LLMの事前学習および微調整段階におけるデータ管理の現状を概観するものである。
論文 参考訳(メタデータ) (2023-12-04T07:42:16Z) - MOSAIC: A Multi-Objective Optimization Framework for Sustainable
Datacenter Management [2.9699290794642366]
持続可能なデータセンター管理のための新しいフレームワークを提案する。
我々は、再生可能エネルギー源、可変エネルギーコスト、電力利用効率、炭素要因、エネルギー中の水強度など、地理的および時間的要因を考慮に入れている。
我々のフレームワークは、最先端技術と比較して最大4.61倍の目的(炭素、水、コスト)で累積的な改善を実現している。
論文 参考訳(メタデータ) (2023-11-14T23:05:37Z) - Transforming Agriculture with Intelligent Data Management and Insights [3.027257459810039]
現代の農業は、気候変動と天然資源の枯渇の制約の下で、食料、燃料、飼料、繊維の需要の増加に対応するための大きな課題に直面している。
データ革新は、アグロエコシステムの生産性、持続可能性、レジリエンスの確保と改善に緊急に必要です。
論文 参考訳(メタデータ) (2023-11-07T22:02:54Z) - LargeST: A Benchmark Dataset for Large-Scale Traffic Forecasting [65.71129509623587]
道路交通予測はスマートシティのイニシアチブにおいて重要な役割を担い、ディープラーニングの力によって大きな進歩を遂げている。
しかし、現在の公開データセットで達成される有望な結果は、現実的なシナリオには適用できないかもしれない。
カリフォルニアで合計8,600のセンサーと5年間の時間カバレッジを含む、LargeSTベンチマークデータセットを紹介します。
論文 参考訳(メタデータ) (2023-06-14T05:48:36Z) - DataPerf: Benchmarks for Data-Centric AI Development [81.03754002516862]
DataPerfは、MLデータセットとデータ中心アルゴリズムを評価するための、コミュニティ主導のベンチマークスイートである。
私たちは、この反復的な開発をサポートするために、複数の課題を抱えたオープンなオンラインプラットフォームを提供しています。
ベンチマーク、オンライン評価プラットフォーム、ベースライン実装はオープンソースである。
論文 参考訳(メタデータ) (2022-07-20T17:47:54Z) - Distributed intelligence on the Edge-to-Cloud Continuum: A systematic
literature review [62.997667081978825]
このレビューは、現在利用可能な機械学習とデータ分析のための最先端ライブラリとフレームワークに関する包括的なビジョンを提供することを目的としている。
現在利用可能なEdge-to-Cloud Continuumに関する実験的な研究のための、主要なシミュレーション、エミュレーション、デプロイメントシステム、テストベッドも調査されている。
論文 参考訳(メタデータ) (2022-04-29T08:06:05Z) - Distributed data analytics [8.415530878975751]
レコメンデーションシステムは、オンラインサービスプロバイダの重要なコンポーネントである。
金融業界は不正検出、リスク管理、コンプライアンスなどの分野で大量のデータを活用するためにMLを採用している。
論文 参考訳(メタデータ) (2022-03-26T14:10:51Z) - Deep Reinforcement Learning Assisted Federated Learning Algorithm for
Data Management of IIoT [82.33080550378068]
産業用IoT(Industrial Internet of Things)の継続的な拡大により、IIoT機器は毎回大量のユーザデータを生成する。
IIoTの分野で、これらの時系列データを効率的かつ安全な方法で管理する方法は、依然として未解決の問題である。
本稿では,無線ネットワーク環境におけるIIoT機器データ管理におけるFL技術の適用について検討する。
論文 参考訳(メタデータ) (2022-02-03T07:12:36Z) - Characterization and Prediction of Deep Learning Workloads in
Large-Scale GPU Datacenters [30.952491139350908]
本稿では,Deep Learningジョブの特徴と資源管理に関する総合的研究について述べる。
本稿では,歴史データに基づく資源管理を行う汎用フレームワークを提案する。
ケーススタディでは、クラスタ全体の平均ジョブ完了時間を最大6.5倍に抑えるQuasi-Shortest-Service-Firstスケジューリングサービスと、クラスタ全体の使用率を最大13%改善するCluster Energy Savingサービスを設計する。
論文 参考訳(メタデータ) (2021-09-03T05:02:52Z) - Artificial Intelligence Based Prognostic Maintenance of Renewable Energy
Systems: A Review of Techniques, Challenges, and Future Research Directions [3.1123064748686287]
データ分析と機械学習(ML)技術は、これらの予後維持システムの全体的な効率を高めるために使われています。
本稿では,文献に報告されている予測/予測保守フレームワークの概要について述べる。
MLベースのソリューションの重要な側面として、ドメインで一般的に使用されるデータセットについても議論します。
論文 参考訳(メタデータ) (2021-04-20T11:41:00Z) - A Framework for Energy and Carbon Footprint Analysis of Distributed and
Federated Edge Learning [48.63610479916003]
本稿では,分散学習政策の環境フットプリントに影響を与える要因を概説し,分析する。
バニラとコンセンサスによって駆動される分散FLポリシーの両方をモデル化する。
その結果、flは低ビット/ジュール効率を特徴とするワイヤレスシステムにおいて、顕著なエンドツーエンドの省エネ(30%-40%)が可能となった。
論文 参考訳(メタデータ) (2021-03-18T16:04:42Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。