Parameterizing density operators with arbitrary symmetries to gain
advantage in quantum state estimation
- URL: http://arxiv.org/abs/2208.06540v1
- Date: Sat, 13 Aug 2022 01:24:03 GMT
- Title: Parameterizing density operators with arbitrary symmetries to gain
advantage in quantum state estimation
- Authors: In\'es Corte, Marcelo Losada, Diego Tielas, Federico Holik and Lorena
Reb\'on
- Abstract summary: We show how to parameterize a density matrix that has an arbitrary symmetry, knowing the generators of the Lie algebra.
In addition, we run numerical experiments and apply these parameterizations to quantum state estimation of states with different symmetries.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this work, we show how to parameterize a density matrix that has an
arbitrary symmetry, knowing the generators of the Lie algebra (if the symmetry
group is a connected Lie group) or the generators of its underlying group (in
case it is finite). This allows to pose MaxEnt and MaxLik estimation techniques
as convex optimization problems with a substantial reduction in the number of
parameters of the function involved. This implies that, apart from a
computational advantage due to the fact that the optimization is performed in a
reduced space, the amount of experimental data needed for a good estimation of
the density matrix can be reduced as well. In addition, we run numerical
experiments and apply these parameterizations to quantum state estimation of
states with different symmetries.
Related papers
- Multivariate root-n-consistent smoothing parameter free matching estimators and estimators of inverse density weighted expectations [51.000851088730684]
We develop novel modifications of nearest-neighbor and matching estimators which converge at the parametric $sqrt n $-rate.
We stress that our estimators do not involve nonparametric function estimators and in particular do not rely on sample-size dependent parameters smoothing.
arXiv Detail & Related papers (2024-07-11T13:28:34Z) - Symmetry-informed transferability of optimal parameters in the Quantum Approximate Optimization Algorithm [0.0]
We show how to translate an arbitrary set of optimal parameters into an adequate domain using the symmetries.
We extend these results to general classical optimization problems described by Isatzing Hamiltonian variational ansatz for relevant physical models.
arXiv Detail & Related papers (2024-07-05T13:37:53Z) - Data-freeWeight Compress and Denoise for Large Language Models [101.53420111286952]
We propose a novel approach termed Data-free Joint Rank-k Approximation for compressing the parameter matrices.
We achieve a model pruning of 80% parameters while retaining 93.43% of the original performance without any calibration data.
arXiv Detail & Related papers (2024-02-26T05:51:47Z) - Intrinsic Bayesian Cramér-Rao Bound with an Application to Covariance Matrix Estimation [49.67011673289242]
This paper presents a new performance bound for estimation problems where the parameter to estimate lies in a smooth manifold.
It induces a geometry for the parameter manifold, as well as an intrinsic notion of the estimation error measure.
arXiv Detail & Related papers (2023-11-08T15:17:13Z) - Posterior Contraction Rates for Mat\'ern Gaussian Processes on
Riemannian Manifolds [51.68005047958965]
We show that intrinsic Gaussian processes can achieve better performance in practice.
Our work shows that finer-grained analyses are needed to distinguish between different levels of data-efficiency.
arXiv Detail & Related papers (2023-09-19T20:30:58Z) - Interacting Particle Langevin Algorithm for Maximum Marginal Likelihood
Estimation [2.53740603524637]
We develop a class of interacting particle systems for implementing a maximum marginal likelihood estimation procedure.
In particular, we prove that the parameter marginal of the stationary measure of this diffusion has the form of a Gibbs measure.
Using a particular rescaling, we then prove geometric ergodicity of this system and bound the discretisation error.
in a manner that is uniform in time and does not increase with the number of particles.
arXiv Detail & Related papers (2023-03-23T16:50:08Z) - Characterization of variational quantum algorithms using free fermions [0.0]
We numerically study the interplay between these symmetries and the locality of the target state.
We find that the number of iterations to converge to the solution scales linearly with system size.
arXiv Detail & Related papers (2022-06-13T18:11:16Z) - Intrinsic Sensitivity Limits for Multiparameter Quantum Metrology [0.0]
The quantum Cram'er-Rao bound provides the ultimate precision in parameter estimation.
We show that, if the information is encoded in a unitary transformation, we can naturally choose the weight matrix.
This ensures an intrinsic bound that is independent of the choice of parametrization.
arXiv Detail & Related papers (2021-05-10T18:00:03Z) - Understanding Implicit Regularization in Over-Parameterized Single Index
Model [55.41685740015095]
We design regularization-free algorithms for the high-dimensional single index model.
We provide theoretical guarantees for the induced implicit regularization phenomenon.
arXiv Detail & Related papers (2020-07-16T13:27:47Z) - Asymptotic Analysis of an Ensemble of Randomly Projected Linear
Discriminants [94.46276668068327]
In [1], an ensemble of randomly projected linear discriminants is used to classify datasets.
We develop a consistent estimator of the misclassification probability as an alternative to the computationally-costly cross-validation estimator.
We also demonstrate the use of our estimator for tuning the projection dimension on both real and synthetic data.
arXiv Detail & Related papers (2020-04-17T12:47:04Z) - Nonconvex Matrix Completion with Linearly Parameterized Factors [10.163102766021373]
Parametric Factorization holds for important examples including subspace and completion simulations.
The effectiveness of our unified nonconstrained matrix optimization method is also illustrated.
arXiv Detail & Related papers (2020-03-29T22:40:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.