Modeling biological face recognition with deep convolutional neural
networks
- URL: http://arxiv.org/abs/2208.06681v3
- Date: Sat, 19 Aug 2023 07:07:10 GMT
- Title: Modeling biological face recognition with deep convolutional neural
networks
- Authors: Leonard E. van Dyck, Walter R. Gruber
- Abstract summary: Deep convolutional neural networks (DCNNs) have become the state-of-the-art computational models of biological object recognition.
Recent efforts have started to transfer this achievement to research on biological face recognition.
In this review, we summarize the first studies that use DCNNs to model biological face recognition.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Deep convolutional neural networks (DCNNs) have become the state-of-the-art
computational models of biological object recognition. Their remarkable success
has helped vision science break new ground and recent efforts have started to
transfer this achievement to research on biological face recognition. In this
regard, face detection can be investigated by comparing face-selective
biological neurons and brain areas to artificial neurons and model layers.
Similarly, face identification can be examined by comparing in vivo and in
silico multidimensional "face spaces". In this review, we summarize the first
studies that use DCNNs to model biological face recognition. On the basis of a
broad spectrum of behavioral and computational evidence, we conclude that DCNNs
are useful models that closely resemble the general hierarchical organization
of face recognition in the ventral visual pathway and the core face network. In
two exemplary spotlights, we emphasize the unique scientific contributions of
these models. First, studies on face detection in DCNNs indicate that
elementary face selectivity emerges automatically through feedforward
processing even in the absence of visual experience. Second, studies on face
identification in DCNNs suggest that identity-specific experience and
generative mechanisms facilitate this particular challenge. Taken together, as
this novel modeling approach enables close control of predisposition (i.e.,
architecture) and experience (i.e., training data), it may be suited to inform
long-standing debates on the substrates of biological face recognition.
Related papers
- Multimodal Adaptive Fusion of Face and Gait Features using Keyless
attention based Deep Neural Networks for Human Identification [67.64124512185087]
Soft biometrics such as gait are widely used with face in surveillance tasks like person recognition and re-identification.
We propose a novel adaptive multi-biometric fusion strategy for the dynamic incorporation of gait and face biometric cues by leveraging keyless attention deep neural networks.
arXiv Detail & Related papers (2023-03-24T05:28:35Z) - Guiding Visual Attention in Deep Convolutional Neural Networks Based on
Human Eye Movements [0.0]
Deep Convolutional Neural Networks (DCNNs) were originally inspired by principles of biological vision.
Recent advances in deep learning seem to decrease this similarity.
We investigate a purely data-driven approach to obtain useful models.
arXiv Detail & Related papers (2022-06-21T17:59:23Z) - An explainability framework for cortical surface-based deep learning [110.83289076967895]
We develop a framework for cortical surface-based deep learning.
First, we adapted a perturbation-based approach for use with surface data.
We show that our explainability framework is not only able to identify important features and their spatial location but that it is also reliable and valid.
arXiv Detail & Related papers (2022-03-15T23:16:49Z) - GAN-generated Faces Detection: A Survey and New Perspectives [48.596997330548]
Generative Adversarial Networks (GAN) have led to the generation of very realistic face images.
The corresponding GAN-face detection techniques are under active development that can examine and expose such fake faces.
We focus on methods that can detect face images that are generated or synthesized from GAN models.
arXiv Detail & Related papers (2022-02-15T02:36:56Z) - SynFace: Face Recognition with Synthetic Data [83.15838126703719]
We devise the SynFace with identity mixup (IM) and domain mixup (DM) to mitigate the performance gap.
We also perform a systematically empirical analysis on synthetic face images to provide some insights on how to effectively utilize synthetic data for face recognition.
arXiv Detail & Related papers (2021-08-18T03:41:54Z) - Comparing object recognition in humans and deep convolutional neural
networks -- An eye tracking study [7.222232547612573]
Deep convolutional neural networks (DCNNs) and the ventral visual pathway share vast architectural and functional similarities.
We demonstrate a comparison of human observers (N = 45) and three feedforward DCNNs through eye tracking and saliency maps.
A DCNN with biologically plausible receptive field sizes called vNet reveals higher agreement with human viewing behavior as contrasted with a standard ResNet architecture.
arXiv Detail & Related papers (2021-07-30T23:32:05Z) - Continuous Emotion Recognition with Spatiotemporal Convolutional Neural
Networks [82.54695985117783]
We investigate the suitability of state-of-the-art deep learning architectures for continuous emotion recognition using long video sequences captured in-the-wild.
We have developed and evaluated convolutional recurrent neural networks combining 2D-CNNs and long short term-memory units, and inflated 3D-CNN models, which are built by inflating the weights of a pre-trained 2D-CNN model during fine-tuning.
arXiv Detail & Related papers (2020-11-18T13:42:05Z) - View-Invariant Gait Recognition with Attentive Recurrent Learning of
Partial Representations [27.33579145744285]
We propose a network that first learns to extract gait convolutional energy maps (GCEM) from frame-level convolutional features.
It then adopts a bidirectional neural network to learn from split bins of the GCEM, thus exploiting the relations between learned partial recurrent representations.
Our proposed model has been extensively tested on two large-scale CASIA-B and OU-M gait datasets.
arXiv Detail & Related papers (2020-10-18T20:20:43Z) - The FaceChannel: A Fast & Furious Deep Neural Network for Facial
Expression Recognition [71.24825724518847]
Current state-of-the-art models for automatic Facial Expression Recognition (FER) are based on very deep neural networks that are effective but rather expensive to train.
We formalize the FaceChannel, a light-weight neural network that has much fewer parameters than common deep neural networks.
We demonstrate how our model achieves a comparable, if not better, performance to the current state-of-the-art in FER.
arXiv Detail & Related papers (2020-09-15T09:25:37Z) - Seeing eye-to-eye? A comparison of object recognition performance in
humans and deep convolutional neural networks under image manipulation [0.0]
This study aims towards a behavioral comparison of visual core object recognition performance between humans and feedforward neural networks.
Analyses of accuracy revealed that humans not only outperform DCNNs on all conditions, but also display significantly greater robustness towards shape and most notably color alterations.
arXiv Detail & Related papers (2020-07-13T10:26:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.