Dynamic Brillouin cooling for continuous optomechanical systems
- URL: http://arxiv.org/abs/2208.06824v1
- Date: Sun, 14 Aug 2022 10:33:43 GMT
- Title: Dynamic Brillouin cooling for continuous optomechanical systems
- Authors: Changlong Zhu and Birgit Stiller
- Abstract summary: In general, ground state cooling using optomechanical interaction is realized in the regime where optical dissipation is higher than mechanical dissipation.
Here, we demonstrate that optomechanical ground state cooling in a continuous optomechanical system is possible by using backward Brillouin scattering.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In general, ground state cooling using optomechanical interaction is realized
in the regime where optical dissipation is higher than mechanical dissipation.
Here, we demonstrate that optomechanical ground state cooling in a continuous
optomechanical system is possible by using backward Brillouin scattering while
mechanical dissipation exceeds optical dissipation which is the common case in
optical waveguides. The cooling is achieved in an anti-Stokes backward
Brillouin process by modulating the intensity of the optomechanical coupling
via a pulsed pump to suppress heating processes in the strong coupling regime.
With such dynamic modulation, a cooling factor with several orders of magnitude
can be realized, which breaks the steady-state cooling limit. This modulation
scheme can also be applied to Brillouin cooling generated by forward intermodal
Brillouin scattering.
Related papers
- Kerr enhanced optomechanical cooling in the unresolved sideband regime [0.0]
Dynamical backaction cooling has been demonstrated to be a successful method for achieving the motional quantum ground state of a mechanical oscillator.
We will demonstrate, however, that this cooling technique in the unresolved sideband regime can be significantly enhanced by utilizing a nonlinear cavity.
arXiv Detail & Related papers (2024-10-20T16:06:12Z) - Nonlinear dynamical Casimir effect and Unruh entanglement in waveguide QED with parametrically modulated coupling [83.88591755871734]
We study theoretically an array of two-level qubits moving relative to a one-dimensional waveguide.
When the frequency of this motion approaches twice the qubit resonance frequency, it induces parametric generation of photons and excitation of the qubits.
We develop a comprehensive general theoretical framework that incorporates both perturbative diagrammatic techniques and a rigorous master-equation approach.
arXiv Detail & Related papers (2024-08-30T15:54:33Z) - Stability and decay of subradiant patterns in a quantum gas with photon-mediated interactions [34.82692226532414]
We study subradiance in a Bose-Einstein condensate positioned at the mode crossing of two optical cavities.
metastable density structures that suppress emission into one cavity mode prevent relaxation to the stationary, superradiant grating.
We reproduce these dynamics by a quantum mean field model, suggesting that subradiance shares characteristics with quasi-stationary states predicted in other long-range interacting systems.
arXiv Detail & Related papers (2024-07-12T12:47:07Z) - Optomechanical cooling with simultaneous intracavity and extracavity
squeezed light [0.0]
We propose a novel and experimentally feasible approach to achieve high-efficiency ground-state cooling of a mechanical oscillator in an optomechanical system.
The quantum interference effect generated by intracavity squeezing and extracavity squeezing can completely suppress the non-resonant Stokes heating process.
Compared with other traditional optomechanical cooling schemes, the single-photon cooling rate in this joint-squeezing scheme can be tremendously enlarged by nearly three orders of magnitude.
arXiv Detail & Related papers (2024-03-02T11:15:00Z) - Phonon-photon conversion as mechanism for cooling and coherence transfer [41.94295877935867]
The energy of a movable wall of a cavity confining a quantum field can be converted into quanta of the field itself.
We employ quantum thermodynamics to show that this phenomenon can be employed as a tool to cool down the wall.
We show how to employ one laser drive to cool the entire system including the case when it is composed of other subsystems.
arXiv Detail & Related papers (2023-12-15T14:42:16Z) - Squeezing for Broadband Multidimensional Variational Measurement [55.2480439325792]
We show that optical losses inside cavity restrict back action exclusion due to loss noise.
We analyze how two-photon (nondegenerate) and conventional (degenerate) squeezing improve sensitivity with account optical losses.
arXiv Detail & Related papers (2023-10-06T18:41:29Z) - Optomechanical compensatory cooling mechanism with exceptional points [4.157445140950159]
We propose a new compensatory cooling mechanism for Brillouin scattering optomechanical system with exceptional points (EPs)
By using the EPs both in optical and mechanical modes, the limited cooling process is compensated effectively.
Our results provide new tools to manipulate the optomechanical interaction in multi-mode systems and open the possibility of quantum state transfer and quantum interface protocols based on phonon cooling in quantum applications.
arXiv Detail & Related papers (2022-09-07T11:08:12Z) - Ground-state cooling of multiple near-degenerate mechanical modes [11.869624318120842]
We propose a general and experimentally feasible approach to realize simultaneous ground-state cooling of arbitrary number of near-degenerate mechanical modes.
Multiple optical modes are employed to provide different dissipation channels that prevent complete destructive interference of the cooling pathway.
In a realistic multi-mode optomechanical system, ground-state cooling of all mechanical modes is demonstrated by sequentially introducing optical drives.
arXiv Detail & Related papers (2021-10-28T05:16:34Z) - Superradiance in dynamically modulated Tavis-Cumming model with spectral
disorder [62.997667081978825]
Superradiance is the enhanced emission of photons from quantum emitters collectively coupling to the same optical mode.
We study the interplay between superradiance and spectral disorder in a dynamically modulated Tavis-Cummings model.
arXiv Detail & Related papers (2021-08-18T21:29:32Z) - Waveguide quantum optomechanics: parity-time phase transitions in
ultrastrong coupling regime [125.99533416395765]
We show that the simplest set-up of two qubits, harmonically trapped over an optical waveguide, enables the ultrastrong coupling regime of the quantum optomechanical interaction.
The combination of the inherent open nature of the system and the strong optomechanical coupling leads to emerging parity-time (PT) symmetry.
The $mathcalPT$ phase transition drives long-living subradiant states, observable in the state-of-the-art waveguide QED setups.
arXiv Detail & Related papers (2020-07-04T11:02:20Z) - Optomechanical cooling by STIRAP-assisted energy transfer $:$ an
alternative route towards the mechanical ground state [0.0]
We describe a protocol to cool a mechanical resonator coupled to a driven optical mode in an optomechanical cavity.
We show how this protocol can outperform normal optomechanical sideband cooling in various regimes.
arXiv Detail & Related papers (2020-02-26T15:04:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.