Optomechanical compensatory cooling mechanism with exceptional points
- URL: http://arxiv.org/abs/2209.03071v1
- Date: Wed, 7 Sep 2022 11:08:12 GMT
- Title: Optomechanical compensatory cooling mechanism with exceptional points
- Authors: Guo-Qing Qin, Xuan Mao, Hao Zhang, Peng-Yu Wen, Gui-Qin Li, Dong Ruan,
and Gui-Lu Long
- Abstract summary: We propose a new compensatory cooling mechanism for Brillouin scattering optomechanical system with exceptional points (EPs)
By using the EPs both in optical and mechanical modes, the limited cooling process is compensated effectively.
Our results provide new tools to manipulate the optomechanical interaction in multi-mode systems and open the possibility of quantum state transfer and quantum interface protocols based on phonon cooling in quantum applications.
- Score: 4.157445140950159
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The ground state cooling of Brillouin scattering optomechanical system is
limited by defects in practical sample. In this paper, we propose a new
compensatory cooling mechanism for Brillouin scattering optomechanical system
with exceptional points (EPs). By using the EPs both in optical and mechanical
modes, the limited cooling process is compensated effectively. The dual-EPs
system, which is discovered in this work for the first time, can be induced by
two defects with specific relative angles and has function of not only actively
manipulating the coupling strength of optical modes but also the Brillouin
phonon modes. Our results provide new tools to manipulate the optomechanical
interaction in multi-mode systems and open the possibility of quantum state
transfer and quantum interface protocols based on phonon cooling in quantum
applications.
Related papers
- Optimizing Entanglement in Nanomechanical Resonators through Quantum Squeezing and Parametric Amplification [0.0]
We propose a scheme that optimize entanglement in nanomechanical resonators through quantum state transfer of squeezed fields assisted by radiation pressure.
The system is driven by red-detuned laser fields, which enable simultaneous cooling of the mechanical resonators.
arXiv Detail & Related papers (2024-10-20T09:37:30Z) - Observing Time-Dependent Energy Level Renormalisation in an Ultrastrongly Coupled Open System [37.69303106863453]
We show how strong coupling and memory effects influence the energy levels of open quantum systems.
Measurements reveal a time-dependent shift in the system's energy levels of up to 15% of the bare system frequency.
Our findings provide direct evidence of dynamic energy level renormalisation in strongly coupled open quantum systems.
arXiv Detail & Related papers (2024-08-28T16:40:55Z) - Suppression of quantum dissipation: A cooperative effect of quantum squeezing and quantum measurement [22.051290654737976]
We propose a scheme for beating environment-induced dissipation in an open two-level system coupled to a parametrically driven cavity.
We demonstrate that, in the presence of the cooperation, the system dynamics can be completely dominated by the effective system-cavity interaction.
This work provides a generic method of dissipation suppression in a variety of quantum mechanical platforms, including natural atoms and superconducting circuits.
arXiv Detail & Related papers (2024-07-12T15:10:44Z) - Optomechanical cooling with simultaneous intracavity and extracavity
squeezed light [0.0]
We propose a novel and experimentally feasible approach to achieve high-efficiency ground-state cooling of a mechanical oscillator in an optomechanical system.
The quantum interference effect generated by intracavity squeezing and extracavity squeezing can completely suppress the non-resonant Stokes heating process.
Compared with other traditional optomechanical cooling schemes, the single-photon cooling rate in this joint-squeezing scheme can be tremendously enlarged by nearly three orders of magnitude.
arXiv Detail & Related papers (2024-03-02T11:15:00Z) - In-situ-tunable spin-spin interactions in a Penning trap with in-bore
optomechanics [41.94295877935867]
We present an optomechanical system for in-situ tuning of the coherent spin-motion and spin-spin interaction strength.
We characterize the system using measurements of the induced mean-field spin precession.
These experiments show approximately a $times2$ variation in the ratio of the coherent to incoherent interaction strength.
arXiv Detail & Related papers (2024-01-31T11:00:39Z) - Limits for coherent optical control of quantum emitters in layered
materials [49.596352607801784]
coherent control of a two-level system is among the most essential challenges in modern quantum optics.
We use a mechanically isolated quantum emitter in hexagonal boron nitride to explore the individual mechanisms which affect the coherence of an optical transition under resonant drive.
New insights on the underlying physical decoherence mechanisms reveals a limit in temperature until which coherent driving of the system is possible.
arXiv Detail & Related papers (2023-12-18T10:37:06Z) - Squeezing for Broadband Multidimensional Variational Measurement [55.2480439325792]
We show that optical losses inside cavity restrict back action exclusion due to loss noise.
We analyze how two-photon (nondegenerate) and conventional (degenerate) squeezing improve sensitivity with account optical losses.
arXiv Detail & Related papers (2023-10-06T18:41:29Z) - Negative cavity photon spectral function in an optomechanical system
with two parametrically-driven mechanical modes [0.0]
We propose an experimentally feasible optomechanical scheme to realize a negative cavity photon spectral function (CPSF)
We find that the presence of two modulated mechanical degrees of freedom provides more controllability over the magnitude and bandwidth of CPSF.
arXiv Detail & Related papers (2022-05-29T17:19:36Z) - Quantum manipulation of a two-level mechanical system [19.444636864515726]
We consider a nonlinearly coupled electromechanical system, and develop a quantitative theory for two-phonon cooling.
In the presence of two-phonon cooling, the mechanical Hilbert space is effectively reduced to its ground and first excited states.
We propose a scheme for performing arbitrary Bloch sphere rotations, and derive the fidelity in the specific case of a $pi$-pulse.
arXiv Detail & Related papers (2021-01-05T19:34:44Z) - Waveguide quantum optomechanics: parity-time phase transitions in
ultrastrong coupling regime [125.99533416395765]
We show that the simplest set-up of two qubits, harmonically trapped over an optical waveguide, enables the ultrastrong coupling regime of the quantum optomechanical interaction.
The combination of the inherent open nature of the system and the strong optomechanical coupling leads to emerging parity-time (PT) symmetry.
The $mathcalPT$ phase transition drives long-living subradiant states, observable in the state-of-the-art waveguide QED setups.
arXiv Detail & Related papers (2020-07-04T11:02:20Z) - Single-Phonon Addition and Subtraction to a Mechanical Thermal State [0.5980627596223345]
Adding or subtracting a single quantum of excitation to a thermal state of a bosonic system has the counter-intuitive effect of approximately doubling its mean occupation.
We perform the first experimental demonstration of this effect outside optics by implementing single-phonon addition and subtraction.
We observe this doubling of the mechanical thermal fluctuations to a high precision using a detection scheme that combines single-photon counting and optical heterodyne detection.
arXiv Detail & Related papers (2020-06-20T15:41:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.