Persistency of non-n-local correlations in noisy linear networks
- URL: http://arxiv.org/abs/2208.06861v3
- Date: Wed, 22 Mar 2023 07:20:03 GMT
- Title: Persistency of non-n-local correlations in noisy linear networks
- Authors: Kaushiki Mukherjee, Indranil Chakrabarty and Ganesh Mylavarapu
- Abstract summary: Linear n-local networks are compatible with quantum repeaters based entanglement distribution protocols.
Error in entanglement generation, communication over noisy quantum channels and imperfections in measurements result in decay of quantumness across such networks.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Linear n-local networks are compatible with quantum repeaters based
entanglement distribution protocols. Different sources of imperfections such as
error in entanglement generation, communication over noisy quantum channels and
imperfections in measurements result in decay of quantumness across such
networks. From practical perspectives it becomes imperative to analyze non
classicality of quantum network correlations in presence of different types of
noise. Present discussion provides a formal characterization of non n-local
feature of quantum correlations in noisy network scenario. In this context,
persistency of non n-locality has been introduced. Such a notion helps in
analyzing decay of non n-local feature of network correlations with increasing
length of the linear network in presence of one or more causes of
imperfections.
Related papers
- Network Nonlocality Without Entanglement Of All Sources [0.0]
Entanglement and nonlocality are two important nonclassical features of quantum correlations.
We have analyzed the relation between entanglement content of the sources and detectable non n-locality in two distinct network topologies.
arXiv Detail & Related papers (2024-10-19T15:11:00Z) - Quantum-Inspired Analysis of Neural Network Vulnerabilities: The Role of
Conjugate Variables in System Attacks [54.565579874913816]
Neural networks demonstrate inherent vulnerability to small, non-random perturbations, emerging as adversarial attacks.
A mathematical congruence manifests between this mechanism and the quantum physics' uncertainty principle, casting light on a hitherto unanticipated interdisciplinarity.
arXiv Detail & Related papers (2024-02-16T02:11:27Z) - Nonlocality activation in a photonic quantum network [0.44270590458998854]
Bell nonlocality is crucial for device-independent technologies like quantum key distribution and randomness generation.
We show that single copies of Bell-local states can give rise to nonlocality after being embedded into a quantum network of multiple parties.
Our findings have fundamental implications for nonlocality and enable the practical use of nonlocal correlations in real-world applications.
arXiv Detail & Related papers (2023-09-12T18:14:49Z) - Hierarchical certification of nonclassical network correlations [50.32788626697182]
We derive linear and nonlinear Bell-like inequalities for networks, whose violation certifies the absence of a minimum number of classical sources in them.
We insert this assumption, which leads to results more amenable to certification in experiments.
arXiv Detail & Related papers (2023-06-27T18:00:01Z) - Detecting Nontrilocal Correlations In Triangle Networks [0.0]
Correlations in quantum networks with independent sources exhibit a completely novel form of nonclassicality.
A set of criteria is framed in the form of Bell-type inequalities, each of which is necessarily satisfied by trilocal correlations.
measurement on a local product state basis turns out to be sufficient to generate nontrilocal correlations in some quantum networks.
arXiv Detail & Related papers (2023-03-15T16:25:32Z) - Experimental full network nonlocality with independent sources and
strict locality constraints [59.541438315564854]
Nonlocality in networks gives rise to phenomena radically different from that in standard Bell scenarios.
We experimentally observe full network nonlocality in a network where the source-independence, locality, and measurement-independence loopholes are closed.
Our experiment violates known inequalities characterizing non-full network nonlocal correlations by over five standard deviations.
arXiv Detail & Related papers (2023-02-05T20:03:58Z) - Certification of non-classicality in all links of a photonic star
network without assuming quantum mechanics [52.95080735625503]
Full network nonlocality goes beyond standard nonlocality in networks by falsifying any model in which at least one source is classical.
We report on the observation of full network nonlocality in a star-shaped network featuring three independent sources of photonic qubits and joint three-qubit entanglement-swapping measurements.
arXiv Detail & Related papers (2022-12-19T19:00:01Z) - Momentum Diminishes the Effect of Spectral Bias in Physics-Informed
Neural Networks [72.09574528342732]
Physics-informed neural network (PINN) algorithms have shown promising results in solving a wide range of problems involving partial differential equations (PDEs)
They often fail to converge to desirable solutions when the target function contains high-frequency features, due to a phenomenon known as spectral bias.
In the present work, we exploit neural tangent kernels (NTKs) to investigate the training dynamics of PINNs evolving under gradient descent with momentum (SGDM)
arXiv Detail & Related papers (2022-06-29T19:03:10Z) - Genuine network quantum nonlocality and self-testing [0.0]
We define a notion of genuine network quantum nonlocality.
We show several examples of correlations that are genuine network nonlocal.
In particular, we present an example of quantum self-testing which relies on the network structure.
arXiv Detail & Related papers (2021-05-26T06:05:22Z) - Full network nonlocality [68.8204255655161]
We introduce the concept of full network nonlocality, which describes correlations that necessitate all links in a network to distribute nonlocal resources.
We show that the most well-known network Bell test does not witness full network nonlocality.
More generally, we point out that established methods for analysing local and theory-independent correlations in networks can be combined in order to deduce sufficient conditions for full network nonlocality.
arXiv Detail & Related papers (2021-05-19T18:00:02Z) - Exploring Bell nonlocality of quantum networks with stabilizing and
logical operators [0.0]
Knowing the stabilizing and logical operators indeed provides a new way of exploring Bell non-locality in quantum networks.
For the qubit distribution in quantum networks, the associated nonlinear Bell inequalities are derived.
The tilted nonlinear Bell inequalities tailored for specific non-maximal entangled stabilizer states are also explored.
arXiv Detail & Related papers (2021-05-09T05:13:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.