論文の概要: Exploring Generative Models for Joint Attribute Value Extraction from
Product Titles
- arxiv url: http://arxiv.org/abs/2208.07130v1
- Date: Mon, 15 Aug 2022 11:51:31 GMT
- ステータス: 処理完了
- システム内更新日: 2022-08-16 14:08:13.516858
- Title: Exploring Generative Models for Joint Attribute Value Extraction from
Product Titles
- Title(参考訳): 商品名からの属性価値統合抽出のための生成モデルの検討
- Authors: Kalyani Roy, Tapas Nayak and Pawan Goyal
- Abstract要約: 属性値抽出(AVE)は、商品の属性とそれらの値のタイトルまたは記述から抽出する。
本稿では,AVEタスクを生成問題として定式化することにより,単語列ベースと位置列ベースという2種類の生成パラダイムを提案する。
我々は2つのデータセットで実験を行い、そこでは生成的アプローチが新しい最先端の結果を得る。
- 参考スコア(独自算出の注目度): 11.444095166873325
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Attribute values of the products are an essential component in any e-commerce
platform. Attribute Value Extraction (AVE) deals with extracting the attributes
of a product and their values from its title or description. In this paper, we
propose to tackle the AVE task using generative frameworks. We present two
types of generative paradigms, namely, word sequence-based and positional
sequence-based, by formulating the AVE task as a generation problem. We conduct
experiments on two datasets where the generative approaches achieve the new
state-of-the-art results. This shows that we can use the proposed framework for
AVE tasks without additional tagging or task-specific model design.
- Abstract(参考訳): 製品の属性値は、あらゆるeコマースプラットフォームにおいて不可欠な要素です。
属性値抽出(ave)は、商品の属性とその価値をそのタイトルまたは説明から抽出することを扱う。
本稿では,AVEタスクに生成フレームワークを用いて取り組むことを提案する。
本稿では, aveタスクを生成問題として定式化することにより, 単語系列と位置系列に基づく2種類の生成パラダイムを提案する。
生成的アプローチが新たな最先端結果を達成する2つのデータセットについて実験を行う。
これは、追加のタグ付けやタスク固有のモデル設計なしに、提案フレームワークをavタスクに使用できることを示している。
関連論文リスト
- Using LLMs for the Extraction and Normalization of Product Attribute Values [47.098255866050835]
本稿では,大規模言語モデル(LLM)を用いて,製品タイトルや記述から属性値の抽出と正規化を行う可能性について検討する。
実験のために、Web Data Commons - Product Attribute Value extract (WDC-PAVE)ベンチマークデータセットを紹介します。
論文 参考訳(メタデータ) (2024-03-04T15:39:59Z) - Exploiting Contextual Target Attributes for Target Sentiment
Classification [53.30511968323911]
TSCの既存のPTLMベースモデルは、1)PTLMをコンテキストエンコーダとして採用した微調整ベースモデル、2)テキスト/単語生成タスクに分類タスクを転送するプロンプトベースモデル、の2つのグループに分類される。
我々は,PTLM を TSC に活用する新たな視点として,言語モデリングと文脈的ターゲット属性による明示的ターゲットコンテキスト相互作用の利点を同時に活用する。
論文 参考訳(メタデータ) (2023-12-21T11:45:28Z) - Enhanced E-Commerce Attribute Extraction: Innovating with Decorative
Relation Correction and LLAMA 2.0-Based Annotation [4.81846973621209]
本稿では,分類のためのBERT,属性値抽出のための条件付きランダムフィールド(CRF)層,データアノテーションのための大規模言語モデル(LLM)を統合した先駆的フレームワークを提案する。
提案手法は, CRFのシーケンス復号技術と相乗化したBERTの頑健な表現学習を利用して, 属性値の同定と抽出を行う。
私たちの方法論は、Walmart、BestBuyのEコマースNERデータセット、CoNLLデータセットなど、さまざまなデータセットで厳格に検証されています。
論文 参考訳(メタデータ) (2023-12-09T08:26:30Z) - JPAVE: A Generation and Classification-based Model for Joint Product
Attribute Prediction and Value Extraction [59.94977231327573]
JPAVEと呼ばれる値生成/分類と属性予測を備えたマルチタスク学習モデルを提案する。
我々のモデルの2つの変種は、オープンワールドとクローズドワールドのシナリオのために設計されている。
公開データセットにおける実験結果は,強いベースラインと比較して,我々のモデルが優れていることを示す。
論文 参考訳(メタデータ) (2023-11-07T18:36:16Z) - A Unified Generative Approach to Product Attribute-Value Identification [6.752749933406399]
本稿では,製品属性値識別(PAVI)タスクに対する生成的アプローチについて検討する。
我々は、予め訓練された生成モデルT5を微調整し、与えられた製品テキストから属性値対のセットをターゲットシーケンスとしてデコードする。
提案手法が既存の抽出法や分類法よりも優れていることを示す実験結果を得た。
論文 参考訳(メタデータ) (2023-06-09T00:33:30Z) - Entity-Graph Enhanced Cross-Modal Pretraining for Instance-level Product
Retrieval [152.3504607706575]
本研究の目的は, 細粒度製品カテゴリを対象とした, 弱制御型マルチモーダル・インスタンスレベルの製品検索である。
まず、Product1Mデータセットをコントリビュートし、2つの実際のインスタンスレベルの検索タスクを定義します。
我々は、マルチモーダルデータから重要な概念情報を組み込むことができるより効果的なクロスモーダルモデルを訓練するために活用する。
論文 参考訳(メタデータ) (2022-06-17T15:40:45Z) - OA-Mine: Open-World Attribute Mining for E-Commerce Products with Weak
Supervision [93.26737878221073]
オープンワールド環境における属性マイニングの問題点を考察し,新しい属性とその値の抽出を行う。
本稿では、まず属性値候補を生成し、次にそれらを属性のクラスタにグループ化する、原則化されたフレームワークを提案する。
我々のモデルは強いベースラインをはるかに上回り、目に見えない属性や製品タイプに一般化することができる。
論文 参考訳(メタデータ) (2022-04-29T04:16:04Z) - Generate, Annotate, and Learn: Generative Models Advance Self-Training
and Knowledge Distillation [58.64720318755764]
Semi-Supervised Learning (SSL)は多くのアプリケーションドメインで成功している。
知識蒸留(KD)により、深層ネットワークとアンサンブルの圧縮が可能となり、新しいタスク固有の未ラベルの例について知識を蒸留する際に最良の結果が得られる。
我々は、非条件生成モデルを用いて、ドメイン内の未ラベルデータを合成する「生成、注釈、学習(GAL)」と呼ばれる一般的なフレームワークを提案する。
論文 参考訳(メタデータ) (2021-06-11T05:01:24Z) - Joint Item Recommendation and Attribute Inference: An Adaptive Graph
Convolutional Network Approach [61.2786065744784]
レコメンデーションシステムでは、ユーザとアイテムは属性に関連付けられ、ユーザはアイテムの好みを表示する。
ユーザ(item)属性をアノテートすることは労働集約的なタスクであるため、属性値が欠落している多くの属性値と不完全であることが多い。
本稿では,共同項目推薦と属性推論のための適応グラフ畳み込みネットワーク(AGCN)アプローチを提案する。
論文 参考訳(メタデータ) (2020-05-25T10:50:01Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。