Comparison of Forecasting Methods of House Electricity Consumption for
Honda Smart Home
- URL: http://arxiv.org/abs/2208.07217v1
- Date: Thu, 11 Aug 2022 19:04:41 GMT
- Title: Comparison of Forecasting Methods of House Electricity Consumption for
Honda Smart Home
- Authors: Farshad Ahmadi Asl and Mehmet Bodur
- Abstract summary: Electricity consumption forecasting enables the development of home energy management systems.
Energy performance in buildings is influenced by many factors like ambient temperature, humidity, and a variety of electrical devices.
The Honda Smart Home US data set was selected to compare three methods for minimizing forecasting errors.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: The electricity consumption of buildings composes a major part of the city's
energy consumption. Electricity consumption forecasting enables the development
of home energy management systems resulting in the future design of more
sustainable houses and a decrease in total energy consumption. Energy
performance in buildings is influenced by many factors like ambient
temperature, humidity, and a variety of electrical devices. Therefore,
multivariate prediction methods are preferred rather than univariate. The Honda
Smart Home US data set was selected to compare three methods for minimizing
forecasting errors, MAE and RMSE: Artificial Neural Networks, Support Vector
Regression, and Fuzzy Rule-Based Systems for Regression by constructing many
models for each method on a multivariate data set in different time terms. The
comparison shows that SVR is a superior method over the alternatives.
Related papers
- AI-Powered Predictions for Electricity Load in Prosumer Communities [0.0]
We present and test artificial intelligence powered short-term load forecasting methodologies.
Results show that the combination of persistent and regression terms (adapted to the load forecasting task) achieves the best forecast accuracy.
arXiv Detail & Related papers (2024-02-21T12:23:09Z) - Global Transformer Architecture for Indoor Room Temperature Forecasting [49.32130498861987]
This work presents a global Transformer architecture for indoor temperature forecasting in multi-room buildings.
It aims at optimizing energy consumption and reducing greenhouse gas emissions associated with HVAC systems.
Notably, this study is the first to apply a Transformer architecture for indoor temperature forecasting in multi-room buildings.
arXiv Detail & Related papers (2023-10-31T14:09:32Z) - Transfer Learning in Transformer-Based Demand Forecasting For Home
Energy Management System [4.573008040057806]
We analyze how transfer learning can help by exploiting data from multiple households to improve a single house's load forecasting.
Specifically, we train an advanced forecasting model using data from multiple different households, and then finetune this global model on a new household with limited data.
The obtained models are used for forecasting power consumption of the household for the next 24 hours(day-ahead) at a time resolution of 15 minutes.
arXiv Detail & Related papers (2023-10-29T21:19:08Z) - Benchmarks and Custom Package for Energy Forecasting [55.460452605056894]
Energy forecasting aims to minimize the cost of subsequent tasks such as power grid dispatch.
In this paper, we collected large-scale load datasets and released a new renewable energy dataset.
We conducted extensive experiments with 21 forecasting methods in these energy datasets at different levels under 11 evaluation metrics.
arXiv Detail & Related papers (2023-07-14T06:50:02Z) - Short-term Prediction of Household Electricity Consumption Using
Customized LSTM and GRU Models [5.8010446129208155]
This paper proposes a customized GRU (Gated Recurrent Unit) and Long Short-Term Memory (LSTM) architecture to address this challenging problem.
The electricity consumption datasets were obtained from individual household smart meters.
arXiv Detail & Related papers (2022-12-16T23:42:57Z) - Cascaded Deep Hybrid Models for Multistep Household Energy Consumption
Forecasting [5.478764356647437]
This study introduces two hybrid cascaded models for forecasting multistep household power consumption in different resolutions.
The proposed hybrid models achieve superior prediction performance compared to the existing multistep power consumption prediction methods.
arXiv Detail & Related papers (2022-07-06T11:02:23Z) - Comparative Analysis of Time Series Forecasting Approaches for Household
Electricity Consumption Prediction [3.7458346891274013]
We use Weka, a data mining tool, to first apply models on hourly and daily household energy consumption datasets available from Kaggle data science community.
Secondly, we also implemented time series forecasting models, ARIMA and VAR, in python to forecast household energy consumption of selected South Korean households with and without weather data.
Our results show that the best methods for the forecasting of energy consumption prediction are Support Vector Regression followed by Multilayer Perceptron and Gaussian Process Regression.
arXiv Detail & Related papers (2022-07-03T12:16:54Z) - An Experimental Urban Case Study with Various Data Sources and a Model
for Traffic Estimation [65.28133251370055]
We organize an experimental campaign with video measurement in an area within the urban network of Zurich, Switzerland.
We focus on capturing the traffic state in terms of traffic flow and travel times by ensuring measurements from established thermal cameras.
We propose a simple yet efficient Multiple Linear Regression (MLR) model to estimate travel times with fusion of various data sources.
arXiv Detail & Related papers (2021-08-02T08:13:57Z) - Investigating Underlying Drivers of Variability in Residential Energy
Usage Patterns with Daily Load Shape Clustering of Smart Meter Data [53.51471969978107]
Large-scale deployment of smart meters has motivated increasing studies to explore disaggregated daily load patterns.
This paper aims to shed light on the mechanisms by which electricity consumption patterns exhibit variability.
arXiv Detail & Related papers (2021-02-16T16:56:27Z) - Bayesian model of electrical heating disaggregation [68.8204255655161]
Adoption of smart meters is a major milestone on the path of European transition to smart energy.
The residential sector in France represents $approx$35% of electricity consumption with $approx$40% (INSEE) of households using electrical heating.
The number of deployed smart meters Linky is expected to reach 35M in 2021.
arXiv Detail & Related papers (2020-11-11T10:05:15Z) - NeurOpt: Neural network based optimization for building energy
management and climate control [58.06411999767069]
We propose a data-driven control algorithm based on neural networks to reduce this cost of model identification.
We validate our learning and control algorithms on a two-story building with ten independently controlled zones, located in Italy.
arXiv Detail & Related papers (2020-01-22T00:51:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.