Cascaded Deep Hybrid Models for Multistep Household Energy Consumption
Forecasting
- URL: http://arxiv.org/abs/2207.02589v1
- Date: Wed, 6 Jul 2022 11:02:23 GMT
- Title: Cascaded Deep Hybrid Models for Multistep Household Energy Consumption
Forecasting
- Authors: Lyes Saad Saoud, Hasan AlMarzouqi, Ramy Hussein
- Abstract summary: This study introduces two hybrid cascaded models for forecasting multistep household power consumption in different resolutions.
The proposed hybrid models achieve superior prediction performance compared to the existing multistep power consumption prediction methods.
- Score: 5.478764356647437
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Sustainability requires increased energy efficiency with minimal waste. The
future power systems should thus provide high levels of flexibility iin
controling energy consumption. Precise projections of future energy demand/load
at the aggregate and on the individual site levels are of great importance for
decision makers and professionals in the energy industry. Forecasting energy
loads has become more advantageous for energy providers and customers, allowing
them to establish an efficient production strategy to satisfy demand. This
study introduces two hybrid cascaded models for forecasting multistep household
power consumption in different resolutions. The first model integrates
Stationary Wavelet Transform (SWT), as an efficient signal preprocessing
technique, with Convolutional Neural Networks and Long Short Term Memory
(LSTM). The second hybrid model combines SWT with a self-attention based neural
network architecture named transformer. The major constraint of using
time-frequency analysis methods such as SWT in multistep energy forecasting
problems is that they require sequential signals, making signal reconstruction
problematic in multistep forecasting applications.The cascaded models can
efficiently address this problem through using the recursive outputs.
Experimental results show that the proposed hybrid models achieve superior
prediction performance compared to the existing multistep power consumption
prediction methods. The results will pave the way for more accurate and
reliable forecasting of household power consumption.
Related papers
- Energy-Aware Dynamic Neural Inference [39.04688735618206]
We introduce an on-device adaptive inference system equipped with an energy-harvester and finite-capacity energy storage.
We show that, as the rate of the ambient energy increases, energy- and confidence-aware control schemes show approximately 5% improvement in accuracy.
We derive a principled policy with theoretical guarantees for confidence-aware and -agnostic controllers.
arXiv Detail & Related papers (2024-11-04T16:51:22Z) - Function Approximation for Reinforcement Learning Controller for Energy from Spread Waves [69.9104427437916]
Multi-generator Wave Energy Converters (WEC) must handle multiple simultaneous waves coming from different directions called spread waves.
These complex devices need controllers with multiple objectives of energy capture efficiency, reduction of structural stress to limit maintenance, and proactive protection against high waves.
In this paper, we explore different function approximations for the policy and critic networks in modeling the sequential nature of the system dynamics.
arXiv Detail & Related papers (2024-04-17T02:04:10Z) - AI-Powered Predictions for Electricity Load in Prosumer Communities [0.0]
We present and test artificial intelligence powered short-term load forecasting methodologies.
Results show that the combination of persistent and regression terms (adapted to the load forecasting task) achieves the best forecast accuracy.
arXiv Detail & Related papers (2024-02-21T12:23:09Z) - Multiagent Reinforcement Learning with an Attention Mechanism for
Improving Energy Efficiency in LoRa Networks [52.96907334080273]
As the network scale increases, the energy efficiency of LoRa networks decreases sharply due to severe packet collisions.
We propose a transmission parameter allocation algorithm based on multiagent reinforcement learning (MALoRa)
Simulation results demonstrate that MALoRa significantly improves the system EE compared with baseline algorithms.
arXiv Detail & Related papers (2023-09-16T11:37:23Z) - Forecasting the steam mass flow in a powerplant using the parallel
hybrid network [0.0]
In this study, we use a parallel hybrid neural network architecture that combines a parametrized quantum circuit and a conventional feed-forward neural network.
Our results show that the parallel hybrid model outperforms standalone classical and quantum models.
arXiv Detail & Related papers (2023-07-18T17:59:25Z) - Long-term Wind Power Forecasting with Hierarchical Spatial-Temporal
Transformer [112.12271800369741]
Wind power is attracting increasing attention around the world due to its renewable, pollution-free, and other advantages.
Accurate wind power forecasting (WPF) can effectively reduce power fluctuations in power system operations.
Existing methods are mainly designed for short-term predictions and lack effective spatial-temporal feature augmentation.
arXiv Detail & Related papers (2023-05-30T04:03:15Z) - Stochastic MPC for energy hubs using data driven demand forecasting [4.033600628443366]
Energy hubs convert and distribute energy resources by combining different energy inputs through multiple conversion and storage components.
The optimal operation of the energy hub exploits its flexibility to increase the energy efficiency and reduce the operational costs.
In this paper, we propose a MPC controller to minimize energy costs using chance constraints for the uncertain electricity and thermal demands.
arXiv Detail & Related papers (2023-04-24T20:24:07Z) - Short-term Prediction of Household Electricity Consumption Using
Customized LSTM and GRU Models [5.8010446129208155]
This paper proposes a customized GRU (Gated Recurrent Unit) and Long Short-Term Memory (LSTM) architecture to address this challenging problem.
The electricity consumption datasets were obtained from individual household smart meters.
arXiv Detail & Related papers (2022-12-16T23:42:57Z) - Risk-Aware Energy Scheduling for Edge Computing with Microgrid: A
Multi-Agent Deep Reinforcement Learning Approach [82.6692222294594]
We study a risk-aware energy scheduling problem for a microgrid-powered MEC network.
We derive the solution by applying a multi-agent deep reinforcement learning (MADRL)-based advantage actor-critic (A3C) algorithm with shared neural networks.
arXiv Detail & Related papers (2020-02-21T02:14:38Z) - Multi-Agent Meta-Reinforcement Learning for Self-Powered and Sustainable
Edge Computing Systems [87.4519172058185]
An effective energy dispatch mechanism for self-powered wireless networks with edge computing capabilities is studied.
A novel multi-agent meta-reinforcement learning (MAMRL) framework is proposed to solve the formulated problem.
Experimental results show that the proposed MAMRL model can reduce up to 11% non-renewable energy usage and by 22.4% the energy cost.
arXiv Detail & Related papers (2020-02-20T04:58:07Z) - NeurOpt: Neural network based optimization for building energy
management and climate control [58.06411999767069]
We propose a data-driven control algorithm based on neural networks to reduce this cost of model identification.
We validate our learning and control algorithms on a two-story building with ten independently controlled zones, located in Italy.
arXiv Detail & Related papers (2020-01-22T00:51:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.