論文の概要: Private Query Release via the Johnson-Lindenstrauss Transform
- arxiv url: http://arxiv.org/abs/2208.07410v1
- Date: Mon, 15 Aug 2022 19:19:16 GMT
- ステータス: 処理完了
- システム内更新日: 2022-08-17 12:20:47.230047
- Title: Private Query Release via the Johnson-Lindenstrauss Transform
- Title(参考訳): Johnson-Lindenstrauss変換によるプライベートクエリリリース
- Authors: Aleksandar Nikolov
- Abstract要約: 差分プライバシーを持つ統計的クエリに対する回答を解放する新しい手法を提案する。
鍵となる考え方は、クエリの回答を低次元空間にランダムに投影することである。
単純なノイズ付加機構を用いて予測されたクエリに回答し、元の次元まで答えを引き上げます。
- 参考スコア(独自算出の注目度): 93.20051580730234
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We introduce a new method for releasing answers to statistical queries with
differential privacy, based on the Johnson-Lindenstrauss lemma. The key idea is
to randomly project the query answers to a lower dimensional space so that the
distance between any two vectors of feasible query answers is preserved up to
an additive error. Then we answer the projected queries using a simple
noise-adding mechanism, and lift the answers up to the original dimension.
Using this method, we give, for the first time, purely differentially private
mechanisms with optimal worst case sample complexity under average error for
answering a workload of $k$ queries over a universe of size $N$. As other
applications, we give the first purely private efficient mechanisms with
optimal sample complexity for computing the covariance of a bounded
high-dimensional distribution, and for answering 2-way marginal queries. We
also show that, up to the dependence on the error, a variant of our mechanism
is nearly optimal for every given query workload.
- Abstract(参考訳): Johnson-Lindenstrauss lemma をベースとした,差分プライバシーを持つ統計的クエリに対する回答の解放手法を提案する。
鍵となるアイデアは、クエリ回答を低次元空間にランダムに投影し、実行可能なクエリ回答の任意の2つのベクトル間の距離を加算誤差まで保存することである。
次に、単純なノイズ付加機構を用いて、投影されたクエリに応答し、答えを元の次元まで持ち上げる。
この手法を用いることで、最小のケースサンプルの複雑さを持つ純粋に微分的にプライベートなメカニズムを平均誤差下で初めて与え、N$の宇宙上のクエリに$k$の負荷に答える。
他の応用として、有界高次元分布の共分散を計算し、2方向辺縁クエリに応答するために最適なサンプル複雑性を持つ、最初の純粋にプライベートな効率のメカニズムを与える。
また、エラーに依存するため、各クエリのワークロードに対して、我々のメカニズムの変形がほぼ最適であることを示す。
関連論文リスト
- Benchmarking Private Population Data Release Mechanisms: Synthetic Data vs. TopDown [50.40020716418472]
本研究では、TopDownアルゴリズムとプライベート合成データ生成を比較し、クエリの複雑さによる精度への影響を判定する。
この結果から,TopDownアルゴリズムは,分散クエリに対して,評価したどの合成データ手法よりもはるかに優れたプライバシー-忠実トレードオフを実現することがわかった。
論文 参考訳(メタデータ) (2024-01-31T17:38:34Z) - Optimal Multi-Distribution Learning [88.3008613028333]
マルチディストリビューション学習は、$k$の異なるデータ分散における最悪のリスクを最小限に抑える共有モデルを学ぶことを目指している。
本稿では, (d+k)/varepsilon2の順に, サンプルの複雑さを伴って, ヴァレプシロン最適ランダム化仮説を導出するアルゴリズムを提案する。
論文 参考訳(メタデータ) (2023-12-08T16:06:29Z) - Answering Ambiguous Questions via Iterative Prompting [84.3426020642704]
オープンドメインの質問応答では、質問のあいまいさのため、複数の妥当な回答が存在する可能性がある。
ひとつのアプローチは、すべての有効な回答を直接予測することですが、これは、妥当性と多様性のバランスに苦労する可能性があります。
本稿では,あいまいな疑問に答える既存手法の欠陥に対処するため,AmbigPromptを提案する。
論文 参考訳(メタデータ) (2023-07-08T04:32:17Z) - Federated Prompting and Chain-of-Thought Reasoning for Improving LLMs
Answering [13.735277588793997]
クラウドベースLarge Language Models (LLMs) を用いた分散ユーザによる質問に対する回答精度の向上について検討する。
本研究は,同じ数学的推論ステップと問題解決手順を含む類似のクエリをユーザが質問する典型的な状況に焦点を当てる。
本稿では,自己整合性(SC)とCoT(Chain-of-Thought)技術を用いて,分散同義語質問を改善することを提案する。
論文 参考訳(メタデータ) (2023-04-27T01:48:03Z) - Query2Particles: Knowledge Graph Reasoning with Particle Embeddings [49.64006979045662]
本稿では,知識グラフにエッジを欠いた複雑な論理的クエリに応答するクエリ埋め込み手法を提案する。
回答エンティティは、エンティティの埋め込みとクエリの埋め込みの類似性に応じて選択される。
埋め込み空間上の様々な領域から多様な回答を検索するために,複雑なKGクエリ応答方法Q2Pを提案する。
論文 参考訳(メタデータ) (2022-04-27T11:16:08Z) - Generalization in the Face of Adaptivity: A Bayesian Perspective [3.0202264016476623]
適応的に選択されたクエリによるデータサンプルの繰り返し使用は、急速に過度な適合につながる可能性がある。
単純なノイズアンバウンド付加アルゴリズムは、この問題を防ぐのに十分であることがわかった。
提案手法では, 過去のクエリに対する応答にデータサンプルに関する情報がどの程度エンコードされたか, ベイズ因子と新しいクエリの共分散から適応性の害が生じることを示す。
論文 参考訳(メタデータ) (2021-06-20T22:06:44Z) - A Mutual Information Maximization Approach for the Spurious Solution
Problem in Weakly Supervised Question Answering [60.768146126094955]
弱々しい教師付き質問応答は通常、最終的な答えのみを監督信号として持つ。
偶然に正解を導出する刺激的な解が多数存在するかもしれないが、そのような解の訓練はモデルの性能を損なう可能性がある。
本稿では,質問応答対と予測解間の相互情報の最大化により,このような意味的相関を明示的に活用することを提案する。
論文 参考訳(メタデータ) (2021-06-14T05:47:41Z) - Differentially Private Query Release Through Adaptive Projection [19.449593001368193]
我々は,$k$-way マージンのような膨大な統計クエリに対する回答を解放するための新しいアルゴリズムを提案し,実装し,評価する。
我々のアルゴリズムは、単純な摂動を用いて、プライベートデータセット上のクエリに応答するプロジェクションメカニズムの連続緩和を適応的に利用する。
特に,プライバシ予算が小さい場合や,クエリクラスが大きい場合など,既存のアルゴリズムよりも優れていることが判明した。
論文 参考訳(メタデータ) (2021-03-11T12:43:18Z) - Compressive Privatization: Sparse Distribution Estimation under Locally
Differentially Privacy [18.43218511751587]
対象の分布がスパースかほぼスパースである限り、必要なサンプルの数は大幅に削減できることを示した。
我々のメカニズムは民営化と次元化を同時に行い、サンプルの複雑さは次元化の減少にのみ依存する。
論文 参考訳(メタデータ) (2020-12-03T17:14:23Z) - Answering Ambiguous Questions through Generative Evidence Fusion and
Round-Trip Prediction [46.38201136570501]
本稿では,複数の通路からの証拠を集約し,一つの回答や質問対の集合を適応的に予測するモデルを提案する。
我々のモデルはRefuelと呼ばれ、AmbigQAデータセット上で新しい最先端のパフォーマンスを実現し、NQ-OpenおよびTriviaQA上での競合性能を示す。
論文 参考訳(メタデータ) (2020-11-26T05:48:55Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。