Phononic bath engineering of a superconducting qubit
- URL: http://arxiv.org/abs/2208.07423v3
- Date: Mon, 24 Jul 2023 19:39:39 GMT
- Title: Phononic bath engineering of a superconducting qubit
- Authors: J. M. Kitzman, J. R. Lane, C. Undershute, P. M. Harrington, N. R.
Beysengulov, C. A. Mikolas, K. W. Murch, J. Pollanen
- Abstract summary: Unintended coupling to phonons can lead to correlated errors in superconducting qubit systems.
We show that coupling a superconducting qubit to a bath of piezoelectric surface acoustic wave phonons enables a novel platform for investigating open quantum systems.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Phonons, the ubiquitous quanta of vibrational energy, play a vital role in
the performance of quantum technologies. Conversely, unintended coupling to
phonons degrades qubit performance and can lead to correlated errors in
superconducting qubit systems. Regardless of whether phonons play an enabling
or deleterious role, they do not typically admit control over their spectral
properties, nor the possibility of engineering their dissipation to be used as
a resource. Here we show that coupling a superconducting qubit to a bath of
piezoelectric surface acoustic wave phonons enables a novel platform for
investigating open quantum systems. By shaping the loss spectrum of the qubit
via the bath of lossy surface phonons, we demonstrate preparation and dynamical
stabilization of superposition states through the combined effects of drive and
dissipation. These experiments highlight the versatility of engineered phononic
dissipation and advance the understanding of mechanical losses in
superconducting qubit systems.
Related papers
- Characterizing losses in InAs two-dimensional electron gas-based gatemon
qubits [4.597795956436758]
We present continuous-wave and time-domain characterization of gatemon qubits and coplanar waveguide resonators based on an InAs two-dimensional electron gas.
We show that the qubit undergoes a vacuum Rabi splitting with a readout cavity and we drive coherent Rabi oscillations between the qubit ground and first excited states.
We detail the loss mechanisms present in these materials through a systematic study of the quality factors of coplanar waveguide resonators.
arXiv Detail & Related papers (2023-09-29T14:23:28Z) - Quantum acoustic Fano interference of surface phonons [0.0]
We present measurements revealing Fano interference of a resonantly trapped piezoelectric surface acoustic wave (SAW) mode with a broad continuum of surface phonons in a system consisting of a SAW resonator coupled to a superconducting qubit.
The experiments highlight the existence of additional weakly coupled mechanical modes and their influence on the qubit-phonon interaction and underscore the importance of phononic interference in quantum acoustic architectures that have been proposed for quantum information processing applications.
arXiv Detail & Related papers (2023-02-02T17:58:44Z) - Probing the symmetry breaking of a light--matter system by an ancillary
qubit [50.591267188664666]
Hybrid quantum systems in the ultrastrong, and even more in the deep-strong, coupling regimes can exhibit exotic physical phenomena.
We experimentally observe the parity symmetry breaking of an ancillary Xmon artificial atom induced by the field of a lumped-element superconducting resonator.
This result opens a way to experimentally explore the novel quantum-vacuum effects emerging in the deep-strong coupling regime.
arXiv Detail & Related papers (2022-09-13T06:14:08Z) - Mitigation of quasiparticle loss in superconducting qubits by phonon
scattering [2.959938599901649]
In superconducting qubits the assumption that errors are sufficiently uncorrelated in space and time is violated by ionizing radiation.
A potential mitigation technique is to place large volumes of normal or superconducting metal on the device, capable of reducing the phonon energy to below the superconducting gap of the qubits.
We investigate the effectiveness of this method in protecting superconducting qubit processors against correlated errors from ionizing radiation.
arXiv Detail & Related papers (2022-07-26T09:02:30Z) - Reminiscence of classical chaos in driven transmons [117.851325578242]
We show that even off-resonant drives can cause strong modifications to the structure of the transmon spectrum rendering a large part of it chaotic.
Results lead to a photon number threshold characterizing the appearance of chaos-induced quantum demolition effects.
arXiv Detail & Related papers (2022-07-19T16:04:46Z) - Slowing down light in a qubit metamaterial [98.00295925462214]
superconducting circuits in the microwave domain still lack such devices.
We demonstrate slowing down electromagnetic waves in a superconducting metamaterial composed of eight qubits coupled to a common waveguide.
Our findings demonstrate high flexibility of superconducting circuits to realize custom band structures.
arXiv Detail & Related papers (2022-02-14T20:55:10Z) - A low-loss ferrite circulator as a tunable chiral quantum system [108.66477491099887]
We demonstrate a low-loss waveguide circulator constructed with single-crystalline yttrium iron garnet (YIG) in a 3D cavity.
We show the coherent coupling of its chiral internal modes with integrated superconducting niobium cavities.
We also probe experimentally the effective non-Hermitian dynamics of this system and its effective non-reciprocal eigenmodes.
arXiv Detail & Related papers (2021-06-21T17:34:02Z) - Transmission spectra of the driven, dissipative Rabi model in the USC
regime [0.0]
We present theoretical transmission spectra of a strongly driven, damped, flux qubit coupled to a dissipative resonator.
Such a qubit-oscillator system constitutes the building block of superconducting circuit QED platforms.
arXiv Detail & Related papers (2021-04-29T16:58:52Z) - Impact of the Central Frequency of Environment on Non-Markovian Dynamics
in Piezoelectric Optomechanical Devices [5.96533464837997]
This paper introduces a semi-classical and full-quantum model of piezoelectric optomechanical systems coupled to a noisy bosonic quantum environment.
We show that the noisy environment, particularly the central frequency of the environment, can enhance the entanglement generation between optical cavities and LC circuits.
Our work can be applied in the fields of electric/ optical switches, and long-distance distribution in a large-scale quantum network.
arXiv Detail & Related papers (2020-11-12T19:16:57Z) - Waveguide quantum optomechanics: parity-time phase transitions in
ultrastrong coupling regime [125.99533416395765]
We show that the simplest set-up of two qubits, harmonically trapped over an optical waveguide, enables the ultrastrong coupling regime of the quantum optomechanical interaction.
The combination of the inherent open nature of the system and the strong optomechanical coupling leads to emerging parity-time (PT) symmetry.
The $mathcalPT$ phase transition drives long-living subradiant states, observable in the state-of-the-art waveguide QED setups.
arXiv Detail & Related papers (2020-07-04T11:02:20Z) - Waveguide Bandgap Engineering with an Array of Superconducting Qubits [101.18253437732933]
We experimentally study a metamaterial made of eight superconducting transmon qubits with local frequency control.
We observe the formation of super- and subradiant states, as well as the emergence of a polaritonic bandgap.
The circuit of this work extends experiments with one and two qubits towards a full-blown quantum metamaterial.
arXiv Detail & Related papers (2020-06-05T09:27:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.