Quantum acoustic Fano interference of surface phonons
- URL: http://arxiv.org/abs/2302.01271v2
- Date: Mon, 24 Jul 2023 19:40:22 GMT
- Title: Quantum acoustic Fano interference of surface phonons
- Authors: J.M. Kitzman, J.R. Lane, C. Undershute, N.R. Beysengulov, C.A.
Mikolas, K.W. Murch and J. Pollanen
- Abstract summary: We present measurements revealing Fano interference of a resonantly trapped piezoelectric surface acoustic wave (SAW) mode with a broad continuum of surface phonons in a system consisting of a SAW resonator coupled to a superconducting qubit.
The experiments highlight the existence of additional weakly coupled mechanical modes and their influence on the qubit-phonon interaction and underscore the importance of phononic interference in quantum acoustic architectures that have been proposed for quantum information processing applications.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Quantum acoustic systems, which integrate surface or bulk phonons with
superconducting qubits, offer a unique opportunity to investigate phononic
$interference$ and $scattering$ processes in the quantum regime. In particular
the interaction between a superconducting qubit and a phononic oscillator
allows the qubit to sense the oscillator's excitation spectrum and underlying
interference effects. Here we present measurements revealing Fano interference
of a resonantly trapped piezoelectric surface acoustic wave (SAW) mode with a
broad continuum of surface phonons in a system consisting of a SAW resonator
coupled to a superconducting qubit. The experiments highlight the existence of
additional weakly coupled mechanical modes and their influence on the
qubit-phonon interaction and underscore the importance of phononic interference
in quantum acoustic architectures that have been proposed for quantum
information processing applications.
Related papers
- Nonlinear dynamical Casimir effect and Unruh entanglement in waveguide QED with parametrically modulated coupling [83.88591755871734]
We study theoretically an array of two-level qubits moving relative to a one-dimensional waveguide.
When the frequency of this motion approaches twice the qubit resonance frequency, it induces parametric generation of photons and excitation of the qubits.
We develop a comprehensive general theoretical framework that incorporates both perturbative diagrammatic techniques and a rigorous master-equation approach.
arXiv Detail & Related papers (2024-08-30T15:54:33Z) - Thin film aluminum nitride surface acoustic wave resonators for quantum
acoustodynamics [14.431420668034457]
We present the potentials of thin film aluminum nitride to on-chip integrate phonons with superconducting qubits over previous bulk piezoelectric substrates.
We have reported high-quality thin film GHz-SAW resonators with the highest internal quality factor Qi of 5 e4 at the single-phonon level.
arXiv Detail & Related papers (2023-04-02T11:02:04Z) - Probing the symmetry breaking of a light--matter system by an ancillary
qubit [50.591267188664666]
Hybrid quantum systems in the ultrastrong, and even more in the deep-strong, coupling regimes can exhibit exotic physical phenomena.
We experimentally observe the parity symmetry breaking of an ancillary Xmon artificial atom induced by the field of a lumped-element superconducting resonator.
This result opens a way to experimentally explore the novel quantum-vacuum effects emerging in the deep-strong coupling regime.
arXiv Detail & Related papers (2022-09-13T06:14:08Z) - Phononic bath engineering of a superconducting qubit [0.0]
Unintended coupling to phonons can lead to correlated errors in superconducting qubit systems.
We show that coupling a superconducting qubit to a bath of piezoelectric surface acoustic wave phonons enables a novel platform for investigating open quantum systems.
arXiv Detail & Related papers (2022-08-15T20:14:16Z) - Tuning long-range fermion-mediated interactions in cold-atom quantum
simulators [68.8204255655161]
Engineering long-range interactions in cold-atom quantum simulators can lead to exotic quantum many-body behavior.
Here, we propose several tuning knobs, accessible in current experimental platforms, that allow to further control the range and shape of the mediated interactions.
arXiv Detail & Related papers (2022-03-31T13:32:12Z) - Quantum Correlations in Jahn-Teller Molecular Systems Simulated with
Superconducting Circuits [0.0]
We explore quantum entanglement among vibrational phonon modes and between electronic and vibrational degrees of freedom in molecular systems.
We propose simulating two-frequency Jahn-Teller systems using superconducting circuit quantum electrodynamics systems.
We conclude by discussing experimental feasibility to detect such quantum correlations, considering the dephasing and decoherence in state-of-the-art superconducting two-level systems.
arXiv Detail & Related papers (2021-10-16T10:22:44Z) - Transmission spectra of the driven, dissipative Rabi model in the USC
regime [0.0]
We present theoretical transmission spectra of a strongly driven, damped, flux qubit coupled to a dissipative resonator.
Such a qubit-oscillator system constitutes the building block of superconducting circuit QED platforms.
arXiv Detail & Related papers (2021-04-29T16:58:52Z) - Measurements of a quantum bulk acoustic resonator using a
superconducting qubit [0.0]
Phonons hold promise for quantum-focused applications as diverse as sensing, information processing, and communication.
We describe a piezoelectric quantum bulk acoustic resonator (QBAR) with a 4.88 GHz resonant frequency.
We couple this QBAR resonator to a superconducting qubit on a separate die and demonstrate quantum control of the mechanics in the coupled system.
arXiv Detail & Related papers (2020-12-08T17:36:33Z) - Quantum Sensors for Microscopic Tunneling Systems [58.720142291102135]
tunneling Two-Level-Systems (TLS) are important for micro-fabricated quantum devices such as superconducting qubits.
We present a method to characterize individual TLS in virtually arbitrary materials deposited as thin-films.
Our approach opens avenues for quantum material spectroscopy to investigate the structure of tunneling defects.
arXiv Detail & Related papers (2020-11-29T09:57:50Z) - Waveguide quantum optomechanics: parity-time phase transitions in
ultrastrong coupling regime [125.99533416395765]
We show that the simplest set-up of two qubits, harmonically trapped over an optical waveguide, enables the ultrastrong coupling regime of the quantum optomechanical interaction.
The combination of the inherent open nature of the system and the strong optomechanical coupling leads to emerging parity-time (PT) symmetry.
The $mathcalPT$ phase transition drives long-living subradiant states, observable in the state-of-the-art waveguide QED setups.
arXiv Detail & Related papers (2020-07-04T11:02:20Z) - Waveguide Bandgap Engineering with an Array of Superconducting Qubits [101.18253437732933]
We experimentally study a metamaterial made of eight superconducting transmon qubits with local frequency control.
We observe the formation of super- and subradiant states, as well as the emergence of a polaritonic bandgap.
The circuit of this work extends experiments with one and two qubits towards a full-blown quantum metamaterial.
arXiv Detail & Related papers (2020-06-05T09:27:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.