論文の概要: FALCON: Scalable Reasoning over Inconsistent ALC Ontologies
- arxiv url: http://arxiv.org/abs/2208.07628v5
- Date: Mon, 27 May 2024 17:04:30 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-30 05:05:50.121386
- Title: FALCON: Scalable Reasoning over Inconsistent ALC Ontologies
- Title(参考訳): FALCON: 一貫性のないALCオントロジに対するスケーラブルな推論
- Authors: Tilman Hinnerichs, Zhenwei Tang, Xi Peng, Xiangliang Zhang, Robert Hoehndorf,
- Abstract要約: ALC 上での近似推論のためのニューラルオントロジー推論器 FALCON を提案する。
古典的ALC推論器におけるモデル生成ステップの近似手法を提案する。
実験結果から,FALCONは不整合の存在下での近似的推論と推論を可能にした。
- 参考スコア(独自算出の注目度): 29.836301264030244
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Ontologies are one of the richest sources of knowledge. Real-world ontologies often contain thousands of axioms and are often human-made. Hence, they may contain inconsistency and incomplete information which may impair classical reasoners to compute entailments that are considered as useful. To overcome these two challenges, we propose FALCON, a Fuzzy Ontology Neural reasoner to approximate reasoning over ALC ontologies. We provide an approximate technique for the model generation step in classical ALC reasoners. Our approximation is not guaranteed to construct exact logical models, but can approximate arbitrary models, which is notably faster for some large ontologies. Moreover, by sampling multiple approximate logical models, our technique supports approximate entailment also over inconsistent ontologies. Theoretical results show that more models generated lead to closer, i.e., faithful approximation of entailment over ALC entailments. Experimental results show that FALCON enables approximate reasoning and reasoning in the presence of inconsistency. Our experiments further demonstrate how ontologies can improve knowledge base completion in biomedicine by incorporating knowledge expressed in ALC.
- Abstract(参考訳): オントロジは最も豊かな知識源の1つである。
現実世界のオントロジーは何千もの公理を持ち、しばしば人造である。
したがって、それらは不整合と不完全情報を含み、それは古典的推論者が有用と見なされるエンタテインメントを計算するのを損なう可能性がある。
これら2つの課題を克服するために,ファジィオントロジーニューラル推論器であるFALCONを提案する。
古典的ALC推論器におけるモデル生成ステップの近似手法を提案する。
我々の近似は正確な論理モデルを構築することは保証されていないが、任意のモデルを近似することができる。
さらに,複数の近似論理モデルをサンプリングすることにより,矛盾するオントロジーよりも近似的エンテーメントをサポートする。
理論的な結果から、より多くのモデルが生成され、ALCエンテーメントよりも忠実なエンテーメント近似がより近づくことが示されている。
実験結果から,FALCONは不整合の存在下での近似的推論と推論を可能にした。
ALCで表現された知識を取り入れることで、オントロジーがバイオメディシンの知識ベース完成をいかに改善できるかをさらに実証する。
関連論文リスト
- Ontology Completion with Natural Language Inference and Concept Embeddings: An Analysis [26.918368764004796]
本研究では,特定のオントロジーから欠落する有能な知識の発見という課題を,よく研究された分類学拡張タスクの一般化として考察する。
1行の作業は、このタスクを自然言語推論(NLI)問題として扱い、不足した知識を特定するために言語モデルによって取得された知識に依存します。
別の研究の行では、概念埋め込みを使用して、カテゴリベースの帰納のための認知モデルからインスピレーションを得て、異なる概念が共通しているものを特定する。
論文 参考訳(メタデータ) (2024-03-25T21:46:35Z) - Soft Reasoning on Uncertain Knowledge Graphs [85.1968214421899]
本研究では,ソフト制約プログラミングの確立を動機とした,不確実な知識に対するソフトクエリの設定について検討する。
本稿では,大規模,不完全,不確実な知識グラフ上でのソフトクエリに応答する,前方推論と後方校正を併用したMLベースのアプローチを提案する。
論文 参考訳(メタデータ) (2024-03-03T13:13:53Z) - A Closer Look at the Self-Verification Abilities of Large Language Models in Logical Reasoning [73.77088902676306]
論理的推論の文脈において,大規模言語モデル(LLM)の自己検証能力について詳しく検討する。
本研究の主目的は,既存のLCMが誤った推論手順を正確に識別するのに苦労し,自己検証法の有効性を保証できないことにある。
論文 参考訳(メタデータ) (2023-11-14T07:13:10Z) - An Embedding-based Approach to Inconsistency-tolerant Reasoning with
Inconsistent Ontologies [12.760301272393898]
本稿では,公理の埋め込みに基づく一貫性のない意味論による推論手法を提案する。
組込みに基づく手法は、最大一貫した部分集合に基づく既存の矛盾耐性推論手法よりも優れていることを示す。
論文 参考訳(メタデータ) (2023-04-04T09:38:02Z) - Dual Box Embeddings for the Description Logic EL++ [16.70961576041243]
知識グラフ(KG)と同様に、知識グラフはしばしば不完全であり、それらの維持と構築は困難であることが証明された。
KGsと同様に、有望なアプローチは、潜在ベクトル空間への埋め込みを学習し、基礎となるDLのセマンティクスに固執することである。
そこで本研究では,概念と役割をボックスとして表現した,DL EL++用のBox$2$ELという新しいオントロジー埋め込み手法を提案する。
論文 参考訳(メタデータ) (2023-01-26T14:13:37Z) - Principled Knowledge Extrapolation with GANs [92.62635018136476]
我々は,知識外挿の新たな視点から,対実合成を研究する。
本稿では, 知識外挿問題に対処するために, クローズド形式判別器を用いた対角ゲームが利用可能であることを示す。
提案手法は,多くのシナリオにおいて,エレガントな理論的保証と優れた性能の両方を享受する。
論文 参考訳(メタデータ) (2022-05-21T08:39:42Z) - Estimation of Bivariate Structural Causal Models by Variational Gaussian
Process Regression Under Likelihoods Parametrised by Normalising Flows [74.85071867225533]
因果機構は構造因果モデルによって記述できる。
最先端の人工知能の大きな欠点の1つは、説明責任の欠如である。
論文 参考訳(メタデータ) (2021-09-06T14:52:58Z) - Systematic Evaluation of Causal Discovery in Visual Model Based
Reinforcement Learning [76.00395335702572]
AIと因果関係の中心的な目標は、抽象表現と因果構造を共同で発見することである。
因果誘導を研究するための既存の環境は、複雑なタスク固有の因果グラフを持つため、この目的には適していない。
本研究の目的は,高次変数の学習表現と因果構造の研究を促進することである。
論文 参考訳(メタデータ) (2021-07-02T05:44:56Z) - The Causal Neural Connection: Expressiveness, Learnability, and
Inference [125.57815987218756]
構造因果モデル (Structuor causal model, SCM) と呼ばれるオブジェクトは、調査中のシステムのランダムな変動のメカニズムと源の集合を表す。
本稿では, 因果的階層定理 (Thm. 1, Bareinboim et al., 2020) がまだニューラルモデルに対して成り立っていることを示す。
我々はニューラル因果モデル(NCM)と呼ばれる特殊なタイプのSCMを導入し、因果推論に必要な構造的制約をエンコードする新しいタイプの帰納バイアスを定式化する。
論文 参考訳(メタデータ) (2021-07-02T01:55:18Z) - Counterfactuals and Causability in Explainable Artificial Intelligence:
Theory, Algorithms, and Applications [0.20999222360659603]
一部の研究者は、機械がある程度の人間レベルの説明性を達成するためには、因果的に理解できる説明を提供する必要があると主張した。
可利用性を提供する可能性のある特定のアルゴリズムのクラスは偽物である。
本稿では,多種多様な文献を体系的に検証し,その事実と説明可能な人工知能の因果性について述べる。
論文 参考訳(メタデータ) (2021-03-07T03:11:39Z) - Plausible Reasoning about EL-Ontologies using Concept Interpolation [27.314325986689752]
本稿では,モデル理論の明確な意味論に基づく帰納的機構を提案する。
我々は、カテゴリーベース誘導の認知モデルと密接に関連している強力なコモンセンス推論機構である推論に焦点を当てた。
論文 参考訳(メタデータ) (2020-06-25T14:19:41Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。