論文の概要: A Latent Feature Analysis-based Approach for Spatio-Temporal Traffic
Data Recovery
- arxiv url: http://arxiv.org/abs/2208.07739v1
- Date: Tue, 16 Aug 2022 13:21:46 GMT
- ステータス: 処理完了
- システム内更新日: 2022-08-17 12:10:52.098183
- Title: A Latent Feature Analysis-based Approach for Spatio-Temporal Traffic
Data Recovery
- Title(参考訳): 時空間交通データ回復のための潜在特徴分析に基づくアプローチ
- Authors: Yuting Ding, Di Wu
- Abstract要約: データ駆動知能(ITS)におけるミスは必然的で一般的な問題である
本稿では,隠れ特徴分析に基づくリアルタイムトラフィックデータ補完手法を提案する。
その結果,連続的欠落したデータを正確に推定できることが示唆された。
- 参考スコア(独自算出の注目度): 3.84562917529518
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Missing data is an inevitable and common problem in data-driven intelligent
transportation systems (ITS). In the past decade, scholars have done many
research on the recovery of missing traffic data, however how to make full use
of spatio-temporal traffic patterns to improve the recovery performance is
still an open problem. Aiming at the spatio-temporal characteristics of traffic
speed data, this paper regards the recovery of missing data as a matrix
completion problem, and proposes a spatio-temporal traffic data completion
method based on hidden feature analysis, which discovers spatio-temporal
patterns and underlying structures from incomplete data to complete the
recovery task. Therefore, we introduce spatial and temporal correlation to
capture the main underlying features of each dimension. Finally, these latent
features are applied to recovery traffic data through latent feature analysis.
The experimental and evaluation results show that the evaluation criterion
value of the model is small, which indicates that the model has better
performance. The results show that the model can accurately estimate the
continuous missing data.
- Abstract(参考訳): データの欠落は、データ駆動インテリジェントトランスポートシステム(ITS)において必然的かつ一般的な問題である。
過去10年間、研究者は交通データ不足の回復について多くの研究を行ってきたが、回復性能を改善するために時空間の交通パターンをフル活用する方法は依然として未解決の問題である。
本稿では,トラヒック速度データの時空間的特性に着目して,欠落データの回復を行列補完問題とし,不完全データから時空間的パターンや基礎構造を検出する隠れ特徴解析に基づく時空間的トラヒックデータ補完手法を提案する。
そこで,各次元の主な特徴を捉えるために,空間的・時間的相関を導入する。
最後に、これらの潜在機能は、潜在機能分析を通じてトラフィックデータをリカバリするために適用される。
実験および評価結果は,モデルの評価基準値が小さいことを示し,モデルの性能が向上したことを示す。
その結果,連続的欠落データを正確に推定できることがわかった。
関連論文リスト
- Physics-guided Active Sample Reweighting for Urban Flow Prediction [75.24539704456791]
都市フロー予測は、バス、タクシー、ライド駆動モデルといった交通サービスのスループットを見積もる、微妙な時間的モデリングである。
最近の予測解は、物理学誘導機械学習(PGML)の概念による改善をもたらす。
我々は、PN(atized Physics-guided Network)を開発し、P-GASR(Physical-guided Active Sample Reweighting)を提案する。
論文 参考訳(メタデータ) (2024-07-18T15:44:23Z) - JRDB-Traj: A Dataset and Benchmark for Trajectory Forecasting in Crowds [79.00975648564483]
ロボット工学、自動運転車、ナビゲーションなどの分野で使用される軌道予測モデルは、現実のシナリオにおいて課題に直面している。
このデータセットは、ロボットの観点から、すべてのエージェント、シーンイメージ、ポイントクラウドの位置を含む包括的なデータを提供する。
本研究の目的は,ロボットに対するエージェントの将来の位置を,生の感覚入力データを用いて予測することである。
論文 参考訳(メタデータ) (2023-11-05T18:59:31Z) - TRIAGE: Characterizing and auditing training data for improved
regression [80.11415390605215]
TRIAGEは回帰タスクに適した新しいデータキャラクタリゼーションフレームワークで、広範囲の回帰器と互換性がある。
TRIAGEは、共形予測分布を利用して、モデルに依存しないスコアリング方法、TRIAGEスコアを提供する。
TRIAGEの特徴は一貫性があり、複数の回帰設定においてデータの彫刻/フィルタリングによるパフォーマンス向上に有効であることを示す。
論文 参考訳(メタデータ) (2023-10-29T10:31:59Z) - ST-GIN: An Uncertainty Quantification Approach in Traffic Data
Imputation with Spatio-temporal Graph Attention and Bidirectional Recurrent
United Neural Networks [18.66289473659838]
本稿では、欠落したデータを計算するための革新的な深層学習手法を提案する。
グラフアテンションアーキテクチャを用いて、交通データに存在する空間的相関をキャプチャする。
双方向ニューラルネットワークを用いて時間情報を学習する。
論文 参考訳(メタデータ) (2023-05-10T22:15:40Z) - Leveraging the structure of dynamical systems for data-driven modeling [111.45324708884813]
トレーニングセットとその構造が長期予測の品質に与える影響を考察する。
トレーニングセットのインフォームドデザインは,システムの不変性と基盤となるアトラクションの構造に基づいて,結果のモデルを大幅に改善することを示す。
論文 参考訳(メタデータ) (2021-12-15T20:09:20Z) - Dynamic Spatiotemporal Graph Convolutional Neural Networks for Traffic
Data Imputation with Complex Missing Patterns [3.9318191265352196]
本稿では,DSTG(Dynamic Spatio Graph Contemporal Networks)と呼ばれる新しいディープラーニングフレームワークを提案する。
本稿では,動的空間依存のリアルタイム交通情報と道路ネットワーク構造をモデル化するためのグラフ構造推定手法を提案する。
提案手法は,既存の深層学習モデルより様々なシナリオにおいて優れており,グラフ構造推定手法はモデルの性能に寄与する。
論文 参考訳(メタデータ) (2021-09-17T05:47:17Z) - OR-Net: Pointwise Relational Inference for Data Completion under Partial
Observation [51.083573770706636]
この作業はリレーショナル推論を使って不完全なデータを埋めます。
本稿では,2つの点での相対性理論をモデル化するために,全関係ネットワーク (or-net) を提案する。
論文 参考訳(メタデータ) (2021-05-02T06:05:54Z) - Time-Series Imputation with Wasserstein Interpolation for Optimal
Look-Ahead-Bias and Variance Tradeoff [66.59869239999459]
ファイナンスでは、ポートフォリオ最適化モデルをトレーニングする前に、損失の計算を適用することができる。
インキュベーションのために全データセットを使用するルックアヘッドバイアスと、トレーニングデータのみを使用することによるインキュベーションの大きなばらつきとの間には、本質的にトレードオフがある。
提案手法は,提案法における差分とルックアヘッドバイアスのトレードオフを最適に制御するベイズ後部コンセンサス分布である。
論文 参考訳(メタデータ) (2021-02-25T09:05:35Z) - Spatio-Temporal Functional Neural Networks [11.73856529960872]
本稿では,多くの研究者によって有効性が証明された時間回帰モデルであるニューラル・ファンクショナル・ネットワーク(FNN)の2つの新しい拡張を提案する。
提案したモデルは気象分野における実用的で挑戦的な降水予測問題を解決するために展開される。
論文 参考訳(メタデータ) (2020-09-11T21:32:35Z) - Deep convolutional generative adversarial networks for traffic data
imputation encoding time series as images [7.053891669775769]
我々は,GAN(Generative Adversarial Network)に基づく交通センサデータ計算フレームワーク(TGAN)を開発した。
本研究では,GASF(Gramian Angular Summation Field)と呼ばれる新しい時間依存符号化手法を開発した。
本研究は,提案モデルにより,平均絶対誤差 (MAE) とルート平均正方形誤差 (RMSE) をベンチマークデータセットの最先端モデルと比較することにより,トラフィックデータ計算精度を著しく向上させることができることを示す。
論文 参考訳(メタデータ) (2020-05-05T19:14:02Z) - A Nonconvex Low-Rank Tensor Completion Model for Spatiotemporal Traffic
Data Imputation [13.48205738743634]
様々なセンサシステムから収集された時空間トラフィックデータには,データ計算の欠如が一般的である。
本稿では,各変数に対する最適解を求めるアルゴリズムを提案する。
提案したモデルは、他のベースラインモデルよりも優れている。
論文 参考訳(メタデータ) (2020-03-23T13:27:01Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。