Unsupervised Domain Adaptation for Segmentation with Black-box Source
Model
- URL: http://arxiv.org/abs/2208.07769v1
- Date: Tue, 16 Aug 2022 14:29:15 GMT
- Title: Unsupervised Domain Adaptation for Segmentation with Black-box Source
Model
- Authors: Xiaofeng Liu, Chaehwa Yoo, Fangxu Xing, C.-C. Jay Kuo, Georges El
Fakhri, Jonghye Woo
- Abstract summary: We propose a practical solution to UDA for segmentation with a black-box segmentation model trained in the source domain only.
Specifically, we resort to a knowledge distillation scheme with exponential mixup decay (EMD) to gradually learn target-specific representations.
We evaluate our framework on the BraTS 2018 database, achieving performance on par with white-box source model adaptation approaches.
- Score: 37.02365343894657
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Unsupervised domain adaptation (UDA) has been widely used to transfer
knowledge from a labeled source domain to an unlabeled target domain to counter
the difficulty of labeling in a new domain. The training of conventional
solutions usually relies on the existence of both source and target domain
data. However, privacy of the large-scale and well-labeled data in the source
domain and trained model parameters can become the major concern of cross
center/domain collaborations. In this work, to address this, we propose a
practical solution to UDA for segmentation with a black-box segmentation model
trained in the source domain only, rather than original source data or a
white-box source model. Specifically, we resort to a knowledge distillation
scheme with exponential mixup decay (EMD) to gradually learn target-specific
representations. In addition, unsupervised entropy minimization is further
applied to regularization of the target domain confidence. We evaluated our
framework on the BraTS 2018 database, achieving performance on par with
white-box source model adaptation approaches.
Related papers
- Memory Consistent Unsupervised Off-the-Shelf Model Adaptation for
Source-Relaxed Medical Image Segmentation [13.260109561599904]
Unsupervised domain adaptation (UDA) has been a vital protocol for migrating information learned from a labeled source domain to an unlabeled heterogeneous target domain.
We propose "off-the-shelf (OS)" UDA (OSUDA), aimed at image segmentation, by adapting an OS segmentor trained in a source domain to a target domain, in the absence of source domain data in adaptation.
arXiv Detail & Related papers (2022-09-16T13:13:50Z) - RAIN: RegulArization on Input and Network for Black-Box Domain
Adaptation [80.03883315743715]
Source-free domain adaptation transits the source-trained model towards target domain without exposing the source data.
This paradigm is still at risk of data leakage due to adversarial attacks on the source model.
We propose a novel approach named RAIN (RegulArization on Input and Network) for Black-Box domain adaptation from both input-level and network-level regularization.
arXiv Detail & Related papers (2022-08-22T18:18:47Z) - Source-Free Domain Adaptation via Distribution Estimation [106.48277721860036]
Domain Adaptation aims to transfer the knowledge learned from a labeled source domain to an unlabeled target domain whose data distributions are different.
Recently, Source-Free Domain Adaptation (SFDA) has drawn much attention, which tries to tackle domain adaptation problem without using source data.
In this work, we propose a novel framework called SFDA-DE to address SFDA task via source Distribution Estimation.
arXiv Detail & Related papers (2022-04-24T12:22:19Z) - Source-Free Domain Adaptive Fundus Image Segmentation with Denoised
Pseudo-Labeling [56.98020855107174]
Domain adaptation typically requires to access source domain data to utilize their distribution information for domain alignment with the target data.
In many real-world scenarios, the source data may not be accessible during the model adaptation in the target domain due to privacy issue.
We present a novel denoised pseudo-labeling method for this problem, which effectively makes use of the source model and unlabeled target data.
arXiv Detail & Related papers (2021-09-19T06:38:21Z) - Distill and Fine-tune: Effective Adaptation from a Black-box Source
Model [138.12678159620248]
Unsupervised domain adaptation (UDA) aims to transfer knowledge in previous related labeled datasets (source) to a new unlabeled dataset (target)
We propose a novel two-step adaptation framework called Distill and Fine-tune (Dis-tune)
arXiv Detail & Related papers (2021-04-04T05:29:05Z) - Source-Free Domain Adaptation for Semantic Segmentation [11.722728148523366]
Unsupervised Domain Adaptation (UDA) can tackle the challenge that convolutional neural network-based approaches for semantic segmentation heavily rely on the pixel-level annotated data.
We propose a source-free domain adaptation framework for semantic segmentation, namely SFDA, in which only a well-trained source model and an unlabeled target domain dataset are available for adaptation.
arXiv Detail & Related papers (2021-03-30T14:14:29Z) - Inferring Latent Domains for Unsupervised Deep Domain Adaptation [54.963823285456925]
Unsupervised Domain Adaptation (UDA) refers to the problem of learning a model in a target domain where labeled data are not available.
This paper introduces a novel deep architecture which addresses the problem of UDA by automatically discovering latent domains in visual datasets.
We evaluate our approach on publicly available benchmarks, showing that it outperforms state-of-the-art domain adaptation methods.
arXiv Detail & Related papers (2021-03-25T14:33:33Z) - Unsupervised Model Adaptation for Continual Semantic Segmentation [15.820660013260584]
We develop an algorithm for adapting a semantic segmentation model that is trained using a labeled source domain to generalize well in an unlabeled target domain.
We provide theoretical analysis and explain conditions under which our algorithm is effective.
Experiments on benchmark adaptation task demonstrate our method achieves competitive performance even compared with joint UDA approaches.
arXiv Detail & Related papers (2020-09-26T04:55:50Z) - Do We Really Need to Access the Source Data? Source Hypothesis Transfer
for Unsupervised Domain Adaptation [102.67010690592011]
Unsupervised adaptationUDA (UDA) aims to leverage the knowledge learned from a labeled source dataset to solve similar tasks in a new unlabeled domain.
Prior UDA methods typically require to access the source data when learning to adapt the model.
This work tackles a practical setting where only a trained source model is available and how we can effectively utilize such a model without source data to solve UDA problems.
arXiv Detail & Related papers (2020-02-20T03:13:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.