論文の概要: Cross-Domain Few-Shot Classification via Inter-Source Stylization
- arxiv url: http://arxiv.org/abs/2208.08015v2
- Date: Tue, 29 Aug 2023 09:05:58 GMT
- ステータス: 処理完了
- システム内更新日: 2023-08-30 19:18:58.118775
- Title: Cross-Domain Few-Shot Classification via Inter-Source Stylization
- Title(参考訳): ソース間スチル化によるクロスドメインFew-Shot分類
- Authors: Huali Xu, Shuaifeng Zhi, Li Liu
- Abstract要約: Cross-Domain Few-Shot Classification (CDFSC)は、限られたラベル付きデータでターゲットデータセットを正確に分類することである。
本稿では、追加のラベル付けコストを必要とせずに複数のソースドメインを利用するソリューションを提案する。
- 参考スコア(独自算出の注目度): 11.008292768447614
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The goal of Cross-Domain Few-Shot Classification (CDFSC) is to accurately
classify a target dataset with limited labelled data by exploiting the
knowledge of a richly labelled auxiliary dataset, despite the differences
between the domains of the two datasets. Some existing approaches require
labelled samples from multiple domains for model training. However, these
methods fail when the sample labels are scarce. To overcome this challenge,
this paper proposes a solution that makes use of multiple source domains
without the need for additional labeling costs. Specifically, one of the source
domains is completely tagged, while the others are untagged. An Inter-Source
Stylization Network (ISSNet) is then introduced to enhance stylisation across
multiple source domains, enriching data distribution and model's generalization
capabilities. Experiments on 8 target datasets show that ISSNet leverages
unlabelled data from multiple source data and significantly reduces the
negative impact of domain gaps on classification performance compared to
several baseline methods.
- Abstract(参考訳): Cross-Domain Few-Shot Classification (CDFSC)の目標は、2つのデータセットのドメインの違いにもかかわらず、リッチにラベル付けされた補助データセットの知識を利用して、限られたラベル付きデータでターゲットデータセットを正確に分類することである。
モデルトレーニングには、複数のドメインのラベル付きサンプルを必要とする既存のアプローチもある。
しかし、サンプルラベルが不足している場合、これらのメソッドは失敗する。
この課題を克服するために,新たなラベル付けコストを伴わずに複数のソースドメインを利用するソリューションを提案する。
具体的には、ソースドメインの1つは完全にタグ付けされ、他のドメインはタグ付けされない。
ソース間スタイライゼーションネットワーク(issnet)を導入し、複数のソースドメイン間のスタイライゼーションを強化し、データ分散とモデルの一般化能力を強化した。
8つのターゲットデータセットでの実験では、ISSNetは複数のソースデータからの非競合データを活用し、いくつかのベースライン手法と比較してドメインギャップが分類性能に与える影響を著しく低減している。
関連論文リスト
- Data-Efficient CLIP-Powered Dual-Branch Networks for Source-Free Unsupervised Domain Adaptation [4.7589762171821715]
Source-free Unsupervised Domain Adaptation (SF-UDA) は、ソースサンプルに直接アクセスすることなく、ラベル付きソースドメインからラベルなしターゲットドメインにモデルのパフォーマンスを転送することを目的としている。
データ効率のよいCLIP方式のデュアルブランチネットワーク(CDBN)を導入し、限られたソースデータとプライバシの問題に対処する。
CDBNは、7つのデータセット上の31の転送タスクにわたる既存のメソッドよりもはるかに少ないソースドメインサンプルで、最先端のパフォーマンスを実現している。
論文 参考訳(メタデータ) (2024-10-21T09:25:49Z) - Instance Level Affinity-Based Transfer for Unsupervised Domain
Adaptation [74.71931918541748]
ILA-DAと呼ばれる適応中のソースからターゲットへの転送に対するインスタンス親和性に基づく基準を提案する。
まず、ソースとターゲットをまたいだ類似および異種サンプルを抽出し、マルチサンプルのコントラスト損失を利用してドメインアライメントプロセスを駆動する信頼性が高く効率的な手法を提案する。
ILA-DAの有効性は、様々なベンチマークデータセットに対する一般的なドメイン適応手法よりも精度が一貫した改善を観察することによって検証する。
論文 参考訳(メタデータ) (2021-04-03T01:33:14Z) - Inferring Latent Domains for Unsupervised Deep Domain Adaptation [54.963823285456925]
Unsupervised Domain Adaptation (UDA)は、ラベル付きデータが利用できないターゲットドメインでモデルを学習する問題を指す。
本稿では,視覚データセット中の潜在ドメインを自動的に発見することにより,udaの問題に対処する新しい深層アーキテクチャを提案する。
提案手法を公開ベンチマークで評価し,最先端のドメイン適応手法よりも優れていることを示す。
論文 参考訳(メタデータ) (2021-03-25T14:33:33Z) - Adversarial Dual Distinct Classifiers for Unsupervised Domain Adaptation [67.83872616307008]
Unversarial Domain adaptation (UDA)は、異なる分散されたラベル付きソースドメインから学習モデルを構築することで、ラベルなしのターゲットサンプルを認識しようとする。
本稿では,タスク固有のカテゴリ境界に一致するソースとターゲット領域のデータ分布を同時に整合させる新しいアドリラルデュアル・ディスタンス・ネットワーク(AD$2$CN)を提案する。
具体的には、ドメイン不変の特徴発生器を利用して、識別的クロスドメインアライメントのガイダンスにより、ソースとターゲットデータを潜在共通空間に埋め込む。
論文 参考訳(メタデータ) (2020-08-27T01:29:10Z) - Discriminative Cross-Domain Feature Learning for Partial Domain
Adaptation [70.45936509510528]
部分的なドメイン適応は、より大きく多様なソースドメインからの知識を、より少ないクラス数でより小さなターゲットドメインに適応させることを目的としています。
ドメイン適応の最近の実践は、ターゲットドメインの擬似ラベルを組み込むことで、効果的な特徴を抽出する。
ターゲットデータを少数のソースデータのみにアライメントすることが不可欠である。
論文 参考訳(メタデータ) (2020-08-26T03:18:53Z) - Clarinet: A One-step Approach Towards Budget-friendly Unsupervised
Domain Adaptation [39.53192710720228]
教師なしドメイン適応(UDA)では、対象ドメインの分類器は、ソースドメインからの膨大な真ラベルデータと対象ドメインからの未ラベルデータで訓練される。
本稿では、対象ドメインの分類器を、ソースドメインからの補完ラベルデータと、対象ドメインからの未ラベルデータと、予算に優しいUDAとで訓練しなければならない、新たな問題設定について考察する。
The complementary label adversarial network (CLARINET) is proposed to solve the BFUDA problem。
論文 参考訳(メタデータ) (2020-07-29T05:31:58Z) - DACS: Domain Adaptation via Cross-domain Mixed Sampling [4.205692673448206]
教師なしのドメイン適応は、あるドメインからラベル付きデータをトレーニングし、同時に関心のあるドメインでラベルなしのデータから学習しようとする。
DACS: クロスドメイン混合サンプリングによるドメイン適応(Domain Adaptation)を提案する。
我々は,GTA5からCityscapesへの最先端の成果を得ることによって,ソリューションの有効性を実証する。
論文 参考訳(メタデータ) (2020-07-17T00:43:11Z) - Towards Fair Cross-Domain Adaptation via Generative Learning [50.76694500782927]
ドメイン適応(DA)は、よくラベル付けされたソースドメイン上でトレーニングされたモデルを、異なる分散に横たわる未ラベルのターゲットドメインに適応することを目的としています。
本研究では,新規な生成的Few-shot Cross-Domain Adaptation (GFCA) アルゴリズムを開発した。
論文 参考訳(メタデータ) (2020-03-04T23:25:09Z) - Multi-source Domain Adaptation for Visual Sentiment Classification [92.53780541232773]
マルチソース・ドメイン適応(MDA)手法をMSGAN(Multi-source Sentiment Generative Adversarial Network)と呼ぶ。
複数のソースドメインからのデータを扱うために、MSGANはソースドメインとターゲットドメインの両方のデータが同じ分布を共有する、統一された感情潜在空間を見つけることを学ぶ。
4つのベンチマークデータセットで実施された大規模な実験により、MSGANは視覚的感情分類のための最先端のMDAアプローチよりも大幅に優れていることが示された。
論文 参考訳(メタデータ) (2020-01-12T08:37:42Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。