CTRL: Clustering Training Losses for Label Error Detection
- URL: http://arxiv.org/abs/2208.08464v2
- Date: Tue, 12 Sep 2023 22:19:00 GMT
- Title: CTRL: Clustering Training Losses for Label Error Detection
- Authors: Chang Yue and Niraj K. Jha
- Abstract summary: In supervised machine learning, use of correct labels is extremely important to ensure high accuracy.
We propose a novel framework, calledClustering TRaining Losses for label error detection.
It detects label errors in two steps based on the observation that models learn clean and noisy labels in different ways.
- Score: 4.49681473359251
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In supervised machine learning, use of correct labels is extremely important
to ensure high accuracy. Unfortunately, most datasets contain corrupted labels.
Machine learning models trained on such datasets do not generalize well. Thus,
detecting their label errors can significantly increase their efficacy. We
propose a novel framework, called CTRL (Clustering TRaining Losses for label
error detection), to detect label errors in multi-class datasets. It detects
label errors in two steps based on the observation that models learn clean and
noisy labels in different ways. First, we train a neural network using the
noisy training dataset and obtain the loss curve for each sample. Then, we
apply clustering algorithms to the training losses to group samples into two
categories: cleanly-labeled and noisily-labeled. After label error detection,
we remove samples with noisy labels and retrain the model. Our experimental
results demonstrate state-of-the-art error detection accuracy on both image
(CIFAR-10 and CIFAR-100) and tabular datasets under simulated noise. We also
use a theoretical analysis to provide insights into why CTRL performs so well.
Related papers
- Improving Label Error Detection and Elimination with Uncertainty Quantification [5.184615738004059]
We develop novel, model-agnostic algorithms for Uncertainty Quantification-Based Label Error Detection (UQ-LED)
Our UQ-LED algorithms outperform state-of-the-art confident learning in identifying label errors.
We propose a novel approach to generate realistic, class-dependent label errors synthetically.
arXiv Detail & Related papers (2024-05-15T15:17:52Z) - Label-Retrieval-Augmented Diffusion Models for Learning from Noisy
Labels [61.97359362447732]
Learning from noisy labels is an important and long-standing problem in machine learning for real applications.
In this paper, we reformulate the label-noise problem from a generative-model perspective.
Our model achieves new state-of-the-art (SOTA) results on all the standard real-world benchmark datasets.
arXiv Detail & Related papers (2023-05-31T03:01:36Z) - Identifying Label Errors in Object Detection Datasets by Loss Inspection [4.442111891959355]
We introduce a benchmark for label error detection methods on object detection datasets.
We simulate four different types of randomly introduced label errors on train and test sets of well-labeled object detection datasets.
arXiv Detail & Related papers (2023-03-13T10:54:52Z) - Pseudo-Label Noise Suppression Techniques for Semi-Supervised Semantic
Segmentation [21.163070161951868]
Semi-consuming learning (SSL) can reduce the need for large labelled datasets by incorporating unsupervised data into the training.
Current SSL approaches use an initially supervised trained model to generate predictions for unlabelled images, called pseudo-labels.
We use three mechanisms to control pseudo-label noise and errors.
arXiv Detail & Related papers (2022-10-19T09:46:27Z) - CaSP: Class-agnostic Semi-Supervised Pretraining for Detection and
Segmentation [60.28924281991539]
We propose a novel Class-agnostic Semi-supervised Pretraining (CaSP) framework to achieve a more favorable task-specificity balance.
Using 3.6M unlabeled data, we achieve a remarkable performance gain of 4.7% over ImageNet-pretrained baseline on object detection.
arXiv Detail & Related papers (2021-12-09T14:54:59Z) - Two Wrongs Don't Make a Right: Combating Confirmation Bias in Learning
with Label Noise [6.303101074386922]
Robust Label Refurbishment (Robust LR) is a new hybrid method that integrates pseudo-labeling and confidence estimation techniques to refurbish noisy labels.
We show that our method successfully alleviates the damage of both label noise and confirmation bias.
For example, Robust LR achieves up to 4.5% absolute top-1 accuracy improvement over the previous best on the real-world noisy dataset WebVision.
arXiv Detail & Related papers (2021-12-06T12:10:17Z) - S3: Supervised Self-supervised Learning under Label Noise [53.02249460567745]
In this paper we address the problem of classification in the presence of label noise.
In the heart of our method is a sample selection mechanism that relies on the consistency between the annotated label of a sample and the distribution of the labels in its neighborhood in the feature space.
Our method significantly surpasses previous methods on both CIFARCIFAR100 with artificial noise and real-world noisy datasets such as WebVision and ANIMAL-10N.
arXiv Detail & Related papers (2021-11-22T15:49:20Z) - Boosting Semi-Supervised Face Recognition with Noise Robustness [54.342992887966616]
This paper presents an effective solution to semi-supervised face recognition that is robust to the label noise aroused by the auto-labelling.
We develop a semi-supervised face recognition solution, named Noise Robust Learning-Labelling (NRoLL), which is based on the robust training ability empowered by GN.
arXiv Detail & Related papers (2021-05-10T14:43:11Z) - Analysis of label noise in graph-based semi-supervised learning [2.4366811507669124]
In machine learning, one must acquire labels to help supervise a model that will be able to generalize to unseen data.
It is often the case that most of our data is unlabeled.
Semi-supervised learning (SSL) alleviates that by making strong assumptions about the relation between the labels and the input data distribution.
arXiv Detail & Related papers (2020-09-27T22:13:20Z) - DivideMix: Learning with Noisy Labels as Semi-supervised Learning [111.03364864022261]
We propose DivideMix, a framework for learning with noisy labels.
Experiments on multiple benchmark datasets demonstrate substantial improvements over state-of-the-art methods.
arXiv Detail & Related papers (2020-02-18T06:20:06Z) - Learning with Out-of-Distribution Data for Audio Classification [60.48251022280506]
We show that detecting and relabelling certain OOD instances, rather than discarding them, can have a positive effect on learning.
The proposed method is shown to improve the performance of convolutional neural networks by a significant margin.
arXiv Detail & Related papers (2020-02-11T21:08:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.