Tree species classification from hyperspectral data using
graph-regularized neural networks
- URL: http://arxiv.org/abs/2208.08675v2
- Date: Fri, 5 May 2023 12:25:49 GMT
- Title: Tree species classification from hyperspectral data using
graph-regularized neural networks
- Authors: Debmita Bandyopadhyay, Subhadip Mukherjee, James Ball, Gr\'egoire
Vincent, David A. Coomes, Carola-Bibiane Sch\"onlieb
- Abstract summary: We propose a graph-regularized neural network (GRNN) algorithm for tree species classification.
The proposed algorithm encompasses superpixel-based segmentation for graph construction, a pixel-wise neural network classifier, and the label propagation technique.
GRNN achieves a high classification accuracy (approx. 92%) on a new HSI data set collected over the heterogeneous forests of French Guiana.
- Score: 11.049203564925634
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We propose a novel graph-regularized neural network (GRNN) algorithm for tree
species classification. The proposed algorithm encompasses superpixel-based
segmentation for graph construction, a pixel-wise neural network classifier,
and the label propagation technique to generate an accurate and realistic
(emulating tree crowns) classification map on a sparsely annotated data set.
GRNN outperforms several state-of-the-art techniques not only for the standard
Indian Pines HSI but also achieves a high classification accuracy (approx. 92%)
on a new HSI data set collected over the heterogeneous forests of French Guiana
(FG) when less than 1% of the pixels are labeled. We further show that GRNN is
competitive with the state-of-the-art semi-supervised methods and exhibits a
small deviation in accuracy for different numbers of training samples and over
repeated trials with randomly sampled labeled pixels for training.
Related papers
- Graph Convolutional Network For Semi-supervised Node Classification With Subgraph Sketching [0.27624021966289597]
We propose the Graph-Learning-Dual Graph Convolutional Neural Network called GLDGCN.
We apply GLDGCN to the semi-supervised node classification task.
Compared with the baseline methods, we achieve higher classification accuracy on three citation networks.
arXiv Detail & Related papers (2024-04-19T09:08:12Z) - Efficient Heterogeneous Graph Learning via Random Projection [58.4138636866903]
Heterogeneous Graph Neural Networks (HGNNs) are powerful tools for deep learning on heterogeneous graphs.
Recent pre-computation-based HGNNs use one-time message passing to transform a heterogeneous graph into regular-shaped tensors.
We propose a hybrid pre-computation-based HGNN, named Random Projection Heterogeneous Graph Neural Network (RpHGNN)
arXiv Detail & Related papers (2023-10-23T01:25:44Z) - A Local Graph Limits Perspective on Sampling-Based GNNs [7.601210044390688]
We propose a theoretical framework for training Graph Neural Networks (GNNs) on large input graphs via training on small, fixed-size sampled subgraphs.
We prove that parameters learned from training sampling-based GNNs on small samples of a large input graph are within an $epsilon$-neighborhood of the outcome of training the same architecture on the whole graph.
arXiv Detail & Related papers (2023-10-17T02:58:49Z) - Bayesian Layer Graph Convolutioanl Network for Hyperspetral Image
Classification [24.91896527342631]
Graph convolutional network (GCN) based models have shown impressive performance.
Deep learning frameworks based on point estimation suffer from low generalization and inability to quantify the classification results uncertainty.
In this paper, we propose a Bayesian layer with Bayesian idea as an insertion layer into point estimation based neural networks.
A Generative Adversarial Network (GAN) is built to solve the sample imbalance problem of HSI dataset.
arXiv Detail & Related papers (2022-11-14T12:56:56Z) - Learning Hierarchical Graph Neural Networks for Image Clustering [81.5841862489509]
We propose a hierarchical graph neural network (GNN) model that learns how to cluster a set of images into an unknown number of identities.
Our hierarchical GNN uses a novel approach to merge connected components predicted at each level of the hierarchy to form a new graph at the next level.
arXiv Detail & Related papers (2021-07-03T01:28:42Z) - A Unified Lottery Ticket Hypothesis for Graph Neural Networks [82.31087406264437]
We present a unified GNN sparsification (UGS) framework that simultaneously prunes the graph adjacency matrix and the model weights.
We further generalize the popular lottery ticket hypothesis to GNNs for the first time, by defining a graph lottery ticket (GLT) as a pair of core sub-dataset and sparse sub-network.
arXiv Detail & Related papers (2021-02-12T21:52:43Z) - Enhance Information Propagation for Graph Neural Network by
Heterogeneous Aggregations [7.3136594018091134]
Graph neural networks are emerging as continuation of deep learning success w.r.t. graph data.
We propose to enhance information propagation among GNN layers by combining heterogeneous aggregations.
We empirically validate the effectiveness of HAG-Net on a number of graph classification benchmarks.
arXiv Detail & Related papers (2021-02-08T08:57:56Z) - Region Growing with Convolutional Neural Networks for Biomedical Image
Segmentation [1.5469452301122177]
We present a methodology that uses convolutional neural networks (CNNs) for segmentation by iteratively growing predicted mask regions in each coordinate direction.
We use a threshold on the CNN probability scores to determine whether pixels are added to the region and the iteration continues until no new pixels are added to the region.
Our method is able to achieve high segmentation accuracy and preserve biologically realistic morphological features while leveraging small amounts of training data and maintaining computational efficiency.
arXiv Detail & Related papers (2020-09-23T17:53:00Z) - Sequential Graph Convolutional Network for Active Learning [53.99104862192055]
We propose a novel pool-based Active Learning framework constructed on a sequential Graph Convolution Network (GCN)
With a small number of randomly sampled images as seed labelled examples, we learn the parameters of the graph to distinguish labelled vs unlabelled nodes.
We exploit these characteristics of GCN to select the unlabelled examples which are sufficiently different from labelled ones.
arXiv Detail & Related papers (2020-06-18T00:55:10Z) - Binarized Graph Neural Network [65.20589262811677]
We develop a binarized graph neural network to learn the binary representations of the nodes with binary network parameters.
Our proposed method can be seamlessly integrated into the existing GNN-based embedding approaches.
Experiments indicate that the proposed binarized graph neural network, namely BGN, is orders of magnitude more efficient in terms of both time and space.
arXiv Detail & Related papers (2020-04-19T09:43:14Z) - Infinitely Wide Graph Convolutional Networks: Semi-supervised Learning
via Gaussian Processes [144.6048446370369]
Graph convolutional neural networks(GCNs) have recently demonstrated promising results on graph-based semi-supervised classification.
We propose a GP regression model via GCNs(GPGC) for graph-based semi-supervised learning.
We conduct extensive experiments to evaluate GPGC and demonstrate that it outperforms other state-of-the-art methods.
arXiv Detail & Related papers (2020-02-26T10:02:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.