Classical, quantum and event-by-event simulation of a Stern-Gerlach
experiment with neutrons
- URL: http://arxiv.org/abs/2208.08699v1
- Date: Thu, 18 Aug 2022 08:24:01 GMT
- Title: Classical, quantum and event-by-event simulation of a Stern-Gerlach
experiment with neutrons
- Authors: Hans De Raedt and Fengping Jin and Kristel Michielsen
- Abstract summary: We present a comprehensive simulation study of the Newtonian and quantum model of a Stern-Gerlach experiment with cold neutrons.
For a sufficiently strong uniform magnetic field, the particle beam splits in two, exactly as in experiment and in concert with quantum theory.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: We present a comprehensive simulation study of the Newtonian and quantum
model of a Stern-Gerlach experiment with cold neutrons.By solving Newton's
equation of motion and the time-dependent Pauli equation, for a wide range of
uniform magnetic field strengths, we scrutinize the role of the latter for
drawing the conclusion that the magnetic moment of the neutron is quantized. We
then demonstrate that a marginal modification of the Newtonian model suffices
to construct, without invoking any concept of quantum theory, an event-based
subquantum model that eliminates the shortcomings of the classical model and
yields results that are in qualitative agreement with experiment and quantum
theory. In this event-by-event model, the intrinsic angular momentum can take
any value on the sphere, yet, for a sufficiently strong uniform magnetic field,
the particle beam splits in two, exactly as in experiment and in concert with
quantum theory.
Related papers
- Quantum data learning for quantum simulations in high-energy physics [55.41644538483948]
We explore the applicability of quantum-data learning to practical problems in high-energy physics.
We make use of ansatz based on quantum convolutional neural networks and numerically show that it is capable of recognizing quantum phases of ground states.
The observation of non-trivial learning properties demonstrated in these benchmarks will motivate further exploration of the quantum-data learning architecture in high-energy physics.
arXiv Detail & Related papers (2023-06-29T18:00:01Z) - A Quantum-Classical Model of Brain Dynamics [62.997667081978825]
Mixed Weyl symbol is used to describe brain processes at the microscopic level.
Electromagnetic fields and phonon modes involved in the processes are treated either classically or semi-classically.
Zero-point quantum effects can be incorporated into numerical simulations by controlling the temperature of each field mode.
arXiv Detail & Related papers (2023-01-17T15:16:21Z) - Dilute neutron star matter from neural-network quantum states [58.720142291102135]
Low-density neutron matter is characterized by the formation of Cooper pairs and the onset of superfluidity.
We model this density regime by capitalizing on the expressivity of the hidden-nucleon neural-network quantum states combined with variational Monte Carlo and reconfiguration techniques.
arXiv Detail & Related papers (2022-12-08T17:55:25Z) - Quantum emulation of the transient dynamics in the multistate
Landau-Zener model [50.591267188664666]
We study the transient dynamics in the multistate Landau-Zener model as a function of the Landau-Zener velocity.
Our experiments pave the way for more complex simulations with qubits coupled to an engineered bosonic mode spectrum.
arXiv Detail & Related papers (2022-11-26T15:04:11Z) - On free fall of fermions and antifermions [0.0]
We propose a model describing spin-half quantum particles in curved spacetime.
We find that spin precesses in a normal Fermi frame, even in the absence of torsion.
We also find that (elementary) fermions and antifermions are indistinguishable in gravity.
arXiv Detail & Related papers (2022-10-13T15:35:36Z) - Quantum Information Approach to the Implementation of a Neutron Cavity [0.0]
We show that the internal confinement of the neutrons through Bragg diffraction can be modelled by a quantum random walk.
The presented results enable new approaches to studying the setups utilizing neutron confinement.
arXiv Detail & Related papers (2022-08-23T17:18:05Z) - Experiment-friendly formulation of quantum backflow [1.0323063834827415]
We quantify the amount of quantum backflow for arbitrary momentum distributions.
We show that the probability of finding a free falling particle above initial level could grow for suitably prepared quantum state with most momentum downwards.
arXiv Detail & Related papers (2020-08-18T13:52:15Z) - From a quantum theory to a classical one [117.44028458220427]
We present and discuss a formal approach for describing the quantum to classical crossover.
The method was originally introduced by L. Yaffe in 1982 for tackling large-$N$ quantum field theories.
arXiv Detail & Related papers (2020-04-01T09:16:38Z) - Quantum Jamming: Critical Properties of a Quantum Mechanical Perceptron [0.0]
We find that the jamming transition with quantum dynamics shows critical exponents different from the classical case.
Our findings have implications for the theory of glasses at ultra-low temperatures and for the study of quantum machine-learning algorithms.
arXiv Detail & Related papers (2020-03-02T18:05:14Z) - Quantum Mechanical description of Bell's experiment assumes Locality [91.3755431537592]
Bell's experiment description assumes the (Quantum Mechanics-language equivalent of the classical) condition of Locality.
This result is complementary to a recently published one demonstrating that non-Locality is necessary to describe said experiment.
It is concluded that, within the framework of Quantum Mechanics, there is absolutely no reason to believe in the existence of non-Local effects.
arXiv Detail & Related papers (2020-02-27T15:04:08Z) - Probing the Universality of Topological Defect Formation in a Quantum
Annealer: Kibble-Zurek Mechanism and Beyond [46.39654665163597]
We report on experimental tests of topological defect formation via the one-dimensional transverse-field Ising model.
We find that the quantum simulator results can indeed be explained by the KZM for open-system quantum dynamics with phase-flip errors.
This implies that the theoretical predictions of the generalized KZM theory, which assumes isolation from the environment, applies beyond its original scope to an open system.
arXiv Detail & Related papers (2020-01-31T02:55:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.