論文の概要: Exploiting Sentiment and Common Sense for Zero-shot Stance Detection
- arxiv url: http://arxiv.org/abs/2208.08797v1
- Date: Thu, 18 Aug 2022 12:27:24 GMT
- ステータス: 処理完了
- システム内更新日: 2022-08-19 13:27:23.464513
- Title: Exploiting Sentiment and Common Sense for Zero-shot Stance Detection
- Title(参考訳): ゼロショットスタンス検出のための爆発感度と共通感覚
- Authors: Yun Luo, Zihan Liu, Yuefeng Shi, Yue Zhang
- Abstract要約: 本稿では,感情と常識知識を用いて姿勢検出モデルの伝達可能性を高めることを提案する。
我々のモデルには、常識知識を得るグラフオートエンコーダモジュールと、感情と常識を持つ姿勢検出モジュールが含まれる。
- 参考スコア(独自算出の注目度): 20.620244248582086
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The stance detection task aims to classify the stance toward given documents
and topics. Since the topics can be implicit in documents and unseen in
training data for zero-shot settings, we propose to boost the transferability
of the stance detection model by using sentiment and commonsense knowledge,
which are seldom considered in previous studies. Our model includes a graph
autoencoder module to obtain commonsense knowledge and a stance detection
module with sentiment and commonsense. Experimental results show that our model
outperforms the state-of-the-art methods on the zero-shot and few-shot
benchmark dataset--VAST. Meanwhile, ablation studies prove the significance of
each module in our model. Analysis of the relations between sentiment, common
sense, and stance indicates the effectiveness of sentiment and common sense.
- Abstract(参考訳): 姿勢検出タスクは、所定の文書や話題に対する姿勢を分類することを目的としている。
本研究は,ゼロショット設定のトレーニングデータに暗黙的なトピックを適用できるため,従来の研究では考えられない感情や常識知識を用いて,姿勢検出モデルの伝達可能性を高めることを提案する。
我々のモデルには、常識知識を得るグラフオートエンコーダモジュールと、感情と常識を持つ姿勢検出モジュールが含まれる。
実験結果から,本モデルはゼロショットおよび少数ショットベンチマークデータセット--VASTにおいて,最先端の手法よりも優れていることがわかった。
一方、アブレーション研究はモデルにおける各モジュールの重要性を証明している。
感情、常識、姿勢の関係の分析は、感情と常識の有効性を示している。
関連論文リスト
- Human-Object Interaction Detection Collaborated with Large Relation-driven Diffusion Models [65.82564074712836]
テキストと画像の拡散モデルに光を流す新しいHOI検出器であるDIFfusionHOIを紹介する。
まず、埋め込み空間における人間と物体の関係パターンの表現をインバージョンベースで学習する戦略を考案する。
これらの学習された関係埋め込みはテキストのプロンプトとして機能し、スタイア拡散モデルが特定の相互作用を記述する画像を生成する。
論文 参考訳(メタデータ) (2024-10-26T12:00:33Z) - Scene-Graph ViT: End-to-End Open-Vocabulary Visual Relationship Detection [14.22646492640906]
オープン語彙の視覚的関係検出のための単純かつ高効率なデコーダレスアーキテクチャを提案する。
我々のモデルはTransformerベースの画像エンコーダで、オブジェクトをトークンとして表現し、それらの関係を暗黙的にモデル化する。
提案手法は,ビジュアルゲノムおよび大語彙GQAベンチマーク上で,リアルタイムな推論速度で,最先端の関係検出性能を実現する。
論文 参考訳(メタデータ) (2024-03-21T10:15:57Z) - Revisiting Self-supervised Learning of Speech Representation from a
Mutual Information Perspective [68.20531518525273]
我々は、情報理論の観点から、既存の自己教師型音声の手法を詳しく検討する。
我々は線形プローブを用いて、対象情報と学習された表現の間の相互情報を推定する。
我々は、ラベルを使わずに、データの異なる部分間の相互情報を見積もる自己教師型の表現を評価する可能性を探る。
論文 参考訳(メタデータ) (2024-01-16T21:13:22Z) - Unified Visual Relationship Detection with Vision and Language Models [89.77838890788638]
この研究は、複数のデータセットからラベル空間の結合を予測する単一の視覚的関係検出器のトレーニングに焦点を当てている。
視覚と言語モデルを活用した統合視覚関係検出のための新しいボトムアップ手法UniVRDを提案する。
人物体間相互作用検出とシーングラフ生成の双方による実験結果から,本モデルの競合性能が示された。
論文 参考訳(メタデータ) (2023-03-16T00:06:28Z) - DisARM: Displacement Aware Relation Module for 3D Detection [38.4380420322491]
Displacement Aware Relation Module (DisARM)は、ポイントクラウドシーンにおける3Dオブジェクト検出の性能を向上させるニューラルネットワークモジュールである。
アンカーを見つけるために,まず,対象性を考慮したサンプリング手法を用いて予備的な関係アンカーモジュールを実行する。
この軽量なリレーショナルモジュールは、最先端検出器に差し込む際にオブジェクトインスタンス検出の精度を著しく向上させる。
論文 参考訳(メタデータ) (2022-03-02T14:49:55Z) - A Multi-Level Attention Model for Evidence-Based Fact Checking [58.95413968110558]
シーケンス構造をトレーニング可能な,シンプルなモデルを提案する。
Fact extract and VERification のための大規模データセットの結果、我々のモデルはグラフベースのアプローチよりも優れていることが示された。
論文 参考訳(メタデータ) (2021-06-02T05:40:12Z) - Semantic Relation Reasoning for Shot-Stable Few-Shot Object Detection [33.25064323136447]
フェーショット物体検出は、実世界のデータの固有の長尾分布のために、必要かつ長続きする問題である。
この研究は、新しい物体検出の学習に明確な関係推論を導入する。
実験では、SRR-FSDは、より高いショットで競争力のある結果を達成することができ、さらに重要なことは、より低い明示的なショットと暗黙的なショットの両方で、大幅にパフォーマンスが向上します。
論文 参考訳(メタデータ) (2021-03-02T18:04:38Z) - Generalized Zero-shot Intent Detection via Commonsense Knowledge [5.398580049917152]
学習データ不足の問題を克服するために,教師なしの方法でコモンセンス知識を活用する意図検出モデル RIDE を提案する。
RIDEは、発話と意図ラベルの間の深い意味的関係をキャプチャする、堅牢で一般化可能な関係メタ機能を計算する。
広範に使用されている3つのインテント検出ベンチマークに関する広範囲な実験的分析により、関係メタ機能により、目に見えないインテントと見えないインテントの両方を検出する精度が著しく向上することが示された。
論文 参考訳(メタデータ) (2021-02-04T23:36:41Z) - Firearm Detection via Convolutional Neural Networks: Comparing a
Semantic Segmentation Model Against End-to-End Solutions [68.8204255655161]
武器の脅威検出とライブビデオからの攻撃的な行動は、潜在的に致命的な事故の迅速検出と予防に使用できる。
これを実現する一つの方法は、人工知能と、特に画像分析のための機械学習を使用することです。
従来のモノリシックなエンド・ツー・エンドのディープラーニングモデルと、セマンティクスセグメンテーションによって火花を検知する単純なニューラルネットワークのアンサンブルに基づく前述したモデルを比較した。
論文 参考訳(メタデータ) (2020-12-17T15:19:29Z) - Zero-Shot Stance Detection: A Dataset and Model using Generalized Topic
Representations [13.153001795077227]
従来のデータセットよりも広い範囲のトピックや語彙の変化をキャプチャするゼロショットスタンス検出のための新しいデータセットを提案する。
また、一般化されたトピック表現を用いてトピック間の関係を暗黙的にキャプチャするスタンス検出の新しいモデルを提案する。
論文 参考訳(メタデータ) (2020-10-07T20:27:12Z) - Visual Relationship Detection with Visual-Linguistic Knowledge from
Multimodal Representations [103.00383924074585]
視覚的関係検出は、画像内の有能なオブジェクト間の関係を推論することを目的としている。
変換器からの視覚言語表現(RVL-BERT)という新しい手法を提案する。
RVL-BERTは、自己教師付き事前学習を通じて学習した視覚的・言語的常識知識を用いて空間推論を行う。
論文 参考訳(メタデータ) (2020-09-10T16:15:09Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。