論文の概要: Study of General Robust Subband Adaptive Filtering
- arxiv url: http://arxiv.org/abs/2208.08856v2
- Date: Fri, 19 Aug 2022 11:37:08 GMT
- ステータス: 処理完了
- システム内更新日: 2022-08-28 22:28:43.154324
- Title: Study of General Robust Subband Adaptive Filtering
- Title(参考訳): 一般ロバスト部分帯域適応フィルタリングに関する研究
- Authors: Yi Yu, Hongsen He, Rodrigo C. de Lamare, Badong Chen
- Abstract要約: インパルス雑音に対する汎用ロバストサブバンド適応フィルタ法(GR-SAF)を提案する。
M推定および最大コレントロピーロバスト基準から異なるスケーリング係数を選択することで、GR-SAFアルゴリズムを簡単に得ることができる。
提案したGR-SAFアルゴリズムは、可変正則化ロバスト正規化SAFアルゴリズムに還元することができ、高速収束率と低定常誤差を有する。
- 参考スコア(独自算出の注目度): 47.29178517675426
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper, we propose a general robust subband adaptive filtering
(GR-SAF) scheme against impulsive noise by minimizing the mean square deviation
under the random-walk model with individual weight uncertainty. Specifically,
by choosing different scaling factors such as from the M-estimate and maximum
correntropy robust criteria in the GR-SAF scheme, we can easily obtain
different GR-SAF algorithms. Importantly, the proposed GR-SAF algorithm can be
reduced to a variable regularization robust normalized SAF algorithm, thus
having fast convergence rate and low steady-state error. Simulations in the
contexts of system identification with impulsive noise and echo cancellation
with double-talk have verified that the proposed GR-SAF algorithms outperforms
its counterparts.
- Abstract(参考訳): 本稿では,個々の重みの不確かさを持つランダムウォークモデルにおける平均二乗偏差を最小化することにより,衝動雑音に対する一般ロバストサブバンド適応フィルタ(gr-saf)方式を提案する。
具体的には、GR-SAF方式において、M推定および最大コレントロピーロバスト基準から異なるスケーリング係数を選択することで、GR-SAFアルゴリズムを簡単に得ることができる。
重要なことに、提案したGR-SAFアルゴリズムは、可変正則化ロバスト正規化SAFアルゴリズムに還元することができ、高速収束率と低定常誤差を有する。
インパルスノイズとエコーキャンセリングの文脈におけるシミュレーションにより,提案したGR-SAFアルゴリズムがそれより優れていることを確認した。
関連論文リスト
- Provably Mitigating Overoptimization in RLHF: Your SFT Loss is Implicitly an Adversarial Regularizer [52.09480867526656]
人間の嗜好を学習する際の分布変化と不確実性の一形態として,不一致の原因を同定する。
過度な最適化を緩和するために、まず、逆選択された報酬モデルに最適なポリシーを選択する理論アルゴリズムを提案する。
報奨モデルとそれに対応する最適ポリシーの等価性を用いて、優先最適化損失と教師付き学習損失を組み合わせた単純な目的を特徴とする。
論文 参考訳(メタデータ) (2024-05-26T05:38:50Z) - Multi-Step Model Predictive Safety Filters: Reducing Chattering by
Increasing the Prediction Horizon [7.55113002732746]
安全フィルタを用いて学習制御ポリシを増強することにより、状態と入力制約の満足度を保証できる。
モデル予測安全フィルタ(MPSF)は、モデル予測制御(MPC)に基づく一般的な安全フィルタリング手法である。
論文 参考訳(メタデータ) (2023-09-20T16:35:29Z) - A Hybrid SFANC-FxNLMS Algorithm for Active Noise Control based on Deep
Learning [17.38644275080562]
Filtered-X normalized least-mean-square (FxNLMS)アルゴリズムは適応最適化により低い定常誤差を得ることができる。
本稿では,適応アルゴリズムの緩やかな収束を克服するためのハイブリッドSFANC-FxNLMS手法を提案する。
実験の結果,ハイブリッドSFANC-FxNLMSアルゴリズムは高速応答時間,低雑音低減誤差,高強靭性を実現可能であることがわかった。
論文 参考訳(メタデータ) (2022-08-17T05:42:39Z) - Sparsity-Aware Robust Normalized Subband Adaptive Filtering algorithms
based on Alternating Optimization [27.43948386608]
本稿では, 雑音下でのスパースシステムの同定のためのSA-RNSAFアルゴリズムを提案する。
提案したSA-RNSAFアルゴリズムは,ロバストな基準とスパース性を考慮したペナルティを定義することで,異なるアルゴリズムを一般化する。
論文 参考訳(メタデータ) (2022-05-15T03:38:13Z) - A Generalized Proportionate-Type Normalized Subband Adaptive Filter [25.568699776077164]
重み付きノルムで正規化されたサブバンド誤差の最小二乗という新しい設計基準が、比例型正規化サブバンド適応フィルタリング(PtNSAF)フレームワークの一般化に有効であることを示す。
汎用PtNSAF (GPtNSAF) のシステム同定問題に対するコンピュータシミュレーションによる影響について検討した。
論文 参考訳(メタデータ) (2021-11-17T07:49:38Z) - High Probability Complexity Bounds for Non-Smooth Stochastic Optimization with Heavy-Tailed Noise [51.31435087414348]
アルゴリズムが高い確率で小さな客観的残差を与えることを理論的に保証することが不可欠である。
非滑らか凸最適化の既存の方法は、信頼度に依存した複雑性境界を持つ。
そこで我々は,勾配クリッピングを伴う2つの手法に対して,新たなステップサイズルールを提案する。
論文 参考訳(メタデータ) (2021-06-10T17:54:21Z) - Positive-Negative Momentum: Manipulating Stochastic Gradient Noise to
Improve Generalization [89.7882166459412]
勾配雑音(SGN)は、ディープラーニングの暗黙の正規化として機能する。
深層学習を改善するためにランダムノイズを注入してSGNを人工的にシミュレートしようとした作品もある。
低計算コストでSGNをシミュレーションし、学習率やバッチサイズを変更することなく、PNM(Positive-Negative Momentum)アプローチを提案する。
論文 参考訳(メタデータ) (2021-03-31T16:08:06Z) - Gaussian Process-based Min-norm Stabilizing Controller for
Control-Affine Systems with Uncertain Input Effects and Dynamics [90.81186513537777]
本稿では,この問題の制御・アフィン特性を捉えた新しい化合物カーネルを提案する。
この結果の最適化問題は凸であることを示し、ガウス過程に基づく制御リャプノフ関数第二次コーンプログラム(GP-CLF-SOCP)と呼ぶ。
論文 参考訳(メタデータ) (2020-11-14T01:27:32Z) - Amortized Conditional Normalized Maximum Likelihood: Reliable Out of
Distribution Uncertainty Estimation [99.92568326314667]
本研究では,不確実性推定のための拡張性のある汎用的アプローチとして,償却条件正規化最大値(ACNML)法を提案する。
提案アルゴリズムは条件付き正規化最大度(CNML)符号化方式に基づいており、最小記述長の原理に従って最小値の最適特性を持つ。
我々は、ACNMLが、分布外入力のキャリブレーションの観点から、不確実性推定のための多くの手法と好意的に比較することを示した。
論文 参考訳(メタデータ) (2020-11-05T08:04:34Z) - Sparsity-Aware SSAF Algorithm with Individual Weighting Factors for
Acoustic Echo Cancellation [34.16801452591553]
本稿では,S-IWF-SSAFアルゴリズムを用いて,スペーサ性を考慮したサブバンド適応フィルタを提案し,解析する。
我々は,S-IWF-SSAF性能を向上させるために,ステップサイズとスパーシティペナルティパラメータの組合せ最適化方式を設計する。
論文 参考訳(メタデータ) (2020-09-18T02:27:44Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。