Self-Supervised Primal-Dual Learning for Constrained Optimization
- URL: http://arxiv.org/abs/2208.09046v1
- Date: Thu, 18 Aug 2022 20:07:10 GMT
- Title: Self-Supervised Primal-Dual Learning for Constrained Optimization
- Authors: Seonho Park, Pascal Van Hentenryck
- Abstract summary: This paper studies how to train machine-learning models that directly approximate the optimal solutions of constrained optimization problems.
It proposes the idea of Primal-Dual Learning (PDL), a self-supervised training method that does not require a set of pre-solved instances or an optimization solver for training and inference.
- Score: 19.965556179096385
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper studies how to train machine-learning models that directly
approximate the optimal solutions of constrained optimization problems. This is
an empirical risk minimization under constraints, which is challenging as
training must balance optimality and feasibility conditions. Supervised
learning methods often approach this challenge by training the model on a large
collection of pre-solved instances. This paper takes a different route and
proposes the idea of Primal-Dual Learning (PDL), a self-supervised training
method that does not require a set of pre-solved instances or an optimization
solver for training and inference. Instead, PDL mimics the trajectory of an
Augmented Lagrangian Method (ALM) and jointly trains primal and dual neural
networks. Being a primal-dual method, PDL uses instance-specific penalties of
the constraint terms in the loss function used to train the primal network.
Experiments show that, on a set of nonlinear optimization benchmarks, PDL
typically exhibits negligible constraint violations and minor optimality gaps,
and is remarkably close to the ALM optimization. PDL also demonstrated improved
or similar performance in terms of the optimality gaps, constraint violations,
and training times compared to existing approaches.
Related papers
- One-Shot Safety Alignment for Large Language Models via Optimal Dualization [64.52223677468861]
This paper presents a perspective of dualization that reduces constrained alignment to an equivalent unconstrained alignment problem.
We do so by pre-optimizing a smooth and convex dual function that has a closed form.
Our strategy leads to two practical algorithms in model-based and preference-based settings.
arXiv Detail & Related papers (2024-05-29T22:12:52Z) - Provably Mitigating Overoptimization in RLHF: Your SFT Loss is Implicitly an Adversarial Regularizer [52.09480867526656]
We identify the source of misalignment as a form of distributional shift and uncertainty in learning human preferences.
To mitigate overoptimization, we first propose a theoretical algorithm that chooses the best policy for an adversarially chosen reward model.
Using the equivalence between reward models and the corresponding optimal policy, the algorithm features a simple objective that combines a preference optimization loss and a supervised learning loss.
arXiv Detail & Related papers (2024-05-26T05:38:50Z) - SOMTP: Self-Supervised Learning-Based Optimizer for MPC-Based Safe Trajectory Planning Problems in Robotics [13.129654942805846]
Model Predictive Control (MP)-based trajectory planning has been widely used in, and Control Barrier (CBF) can improve its constraints.
In this paper, we propose a self-supervised learning algorithm for CBF-MPC trajectory planning.
arXiv Detail & Related papers (2024-05-15T09:38:52Z) - Prior Constraints-based Reward Model Training for Aligning Large Language Models [58.33118716810208]
This paper proposes a Prior Constraints-based Reward Model (namely PCRM) training method to mitigate this problem.
PCRM incorporates prior constraints, specifically, length ratio and cosine similarity between outputs of each comparison pair, during reward model training to regulate optimization magnitude and control score margins.
Experimental results demonstrate that PCRM significantly improves alignment performance by effectively constraining reward score scaling.
arXiv Detail & Related papers (2024-04-01T07:49:11Z) - Learning Constrained Optimization with Deep Augmented Lagrangian Methods [54.22290715244502]
A machine learning (ML) model is trained to emulate a constrained optimization solver.
This paper proposes an alternative approach, in which the ML model is trained to predict dual solution estimates directly.
It enables an end-to-end training scheme is which the dual objective is as a loss function, and solution estimates toward primal feasibility, emulating a Dual Ascent method.
arXiv Detail & Related papers (2024-03-06T04:43:22Z) - CaVE: A Cone-Aligned Approach for Fast Predict-then-optimize with Binary Linear Programs [23.00554768496448]
This work focuses on binary linear programs (BLPs) and proposes a new end-to-end training method to predict-then-optimize.
Our method, Cone-aligned Vector Estimation (CaVE), aligns the predicted cost vectors with the normal cone corresponding to the true optimal solution of a training instance.
arXiv Detail & Related papers (2023-12-12T20:24:19Z) - Self-Supervised Learning for Large-Scale Preventive Security Constrained DC Optimal Power Flow [20.078717680640214]
Security-Constrained Optimal Power Flow (SCOPF) plays a crucial role in power grid stability but becomes increasingly complex as systems grow.
This paper introduces PDL-SCOPF, a self-supervised end-to-end primal-dual learning framework for producing near-optimal solutions to large-scale SCOPF problems.
arXiv Detail & Related papers (2023-11-29T20:36:35Z) - Stochastic Methods for AUC Optimization subject to AUC-based Fairness
Constraints [51.12047280149546]
A direct approach for obtaining a fair predictive model is to train the model through optimizing its prediction performance subject to fairness constraints.
We formulate the training problem of a fairness-aware machine learning model as an AUC optimization problem subject to a class of AUC-based fairness constraints.
We demonstrate the effectiveness of our approach on real-world data under different fairness metrics.
arXiv Detail & Related papers (2022-12-23T22:29:08Z) - Careful! Training Relevance is Real [0.7742297876120561]
We propose constraints designed to enforce training relevance.
We show through a collection of experimental results that adding the suggested constraints significantly improves the quality of solutions.
arXiv Detail & Related papers (2022-01-12T11:54:31Z) - Combining Deep Learning and Optimization for Security-Constrained
Optimal Power Flow [94.24763814458686]
Security-constrained optimal power flow (SCOPF) is fundamental in power systems.
Modeling of APR within the SCOPF problem results in complex large-scale mixed-integer programs.
This paper proposes a novel approach that combines deep learning and robust optimization techniques.
arXiv Detail & Related papers (2020-07-14T12:38:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.