Using Multi-Encoder Fusion Strategies to Improve Personalized Response
Selection
- URL: http://arxiv.org/abs/2208.09601v1
- Date: Sat, 20 Aug 2022 04:13:27 GMT
- Title: Using Multi-Encoder Fusion Strategies to Improve Personalized Response
Selection
- Authors: Souvik Das, Sougata Saha, Rohini K. Srihari
- Abstract summary: We propose a suite of fusion strategies that capture the interaction between persona, emotion, and entailment information of utterances.
We train a BERT-based model which outperforms the previous methods by margins larger than 2.3 % on original personas and 1.9 % on revised personas.
- Score: 2.8360662552057323
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Personalized response selection systems are generally grounded on persona.
However, there exists a co-relation between persona and empathy, which is not
explored well in these systems. Also, faithfulness to the conversation context
plunges when a contradictory or an off-topic response is selected. This paper
attempts to address these issues by proposing a suite of fusion strategies that
capture the interaction between persona, emotion, and entailment information of
the utterances. Ablation studies on the Persona-Chat dataset show that
incorporating emotion and entailment improves the accuracy of response
selection. We combine our fusion strategies and concept-flow encoding to train
a BERT-based model which outperforms the previous methods by margins larger
than 2.3 % on original personas and 1.9 % on revised personas in terms of
hits@1 (top-1 accuracy), achieving a new state-of-the-art performance on the
Persona-Chat dataset.
Related papers
- Multimodal Fusion with LLMs for Engagement Prediction in Natural Conversation [70.52558242336988]
We focus on predicting engagement in dyadic interactions by scrutinizing verbal and non-verbal cues, aiming to detect signs of disinterest or confusion.
In this work, we collect a dataset featuring 34 participants engaged in casual dyadic conversations, each providing self-reported engagement ratings at the end of each conversation.
We introduce a novel fusion strategy using Large Language Models (LLMs) to integrate multiple behavior modalities into a multimodal transcript''
arXiv Detail & Related papers (2024-09-13T18:28:12Z) - PICK: Polished & Informed Candidate Scoring for Knowledge-Grounded
Dialogue Systems [59.1250765143521]
Current knowledge-grounded dialogue systems often fail to align the generated responses with human-preferred qualities.
We propose Polished & Informed Candidate Scoring (PICK), a generation re-scoring framework.
We demonstrate the effectiveness of PICK in generating responses that are more faithful while keeping them relevant to the dialogue history.
arXiv Detail & Related papers (2023-09-19T08:27:09Z) - Diverse and Faithful Knowledge-Grounded Dialogue Generation via
Sequential Posterior Inference [82.28542500317445]
We present an end-to-end learning framework, termed Sequential Posterior Inference (SPI), capable of selecting knowledge and generating dialogues.
Unlike other methods, SPI does not require the inference network or assume a simple geometry of the posterior distribution.
arXiv Detail & Related papers (2023-06-01T21:23:13Z) - Best Practices for 2-Body Pose Forecasting [58.661899246497896]
We review the progress in human pose forecasting and provide an in-depth assessment of the single-person practices that perform best.
Other single-person practices do not transfer to 2-body, so the proposed best ones do not include hierarchical body modeling or attention-based interaction encoding.
Our proposed 2-body pose forecasting best practices yield a performance improvement of 21.9% over the state-of-the-art on the most recent ExPI dataset.
arXiv Detail & Related papers (2023-04-12T10:46:23Z) - Improving Personality Consistency in Conversation by Persona Extending [22.124187337032946]
We propose a novel retrieval-to-prediction paradigm consisting of two subcomponents, namely, Persona Retrieval Model (PRM) and Posterior-scored Transformer (PS-Transformer)
Our proposed model yields considerable improvements in both automatic metrics and human evaluations.
arXiv Detail & Related papers (2022-08-23T09:00:58Z) - Dual Task Framework for Debiasing Persona-grounded Dialogue Dataset [17.403065663306567]
We introduce a data-centric approach for the task of improving persona-conditioned dialogue agents.
Specifically, we augment relevant personas to improve dialogue dataset/agent, by leveraging the primal-dual structure of the two tasks.
Experiments on Persona-Chat show that our approach outperforms pre-trained LMs by an 11.7 point gain in terms of accuracy.
arXiv Detail & Related papers (2022-02-11T04:08:46Z) - Bilateral Personalized Dialogue Generation with Dynamic Persona-Aware
Fusion [3.5433229509828155]
We propose a bilateral personalized dialogue generation (BPDG) method with dynamic persona-aware fusion via multi-task transfer learning.
The experimental results show that the proposed method outperforms several state-of-the-art methods in terms of both automatic and manual evaluations.
arXiv Detail & Related papers (2021-06-15T03:21:19Z) - Partner Matters! An Empirical Study on Fusing Personas for Personalized
Response Selection in Retrieval-Based Chatbots [51.091235903442715]
This paper makes an attempt to explore the impact of utilizing personas that describe either self or partner speakers on the task of response selection.
Four persona fusion strategies are designed, which assume personas interact with contexts or responses in different ways.
Empirical studies on the Persona-Chat dataset show that the partner personas can improve the accuracy of response selection.
arXiv Detail & Related papers (2021-05-19T10:32:30Z) - Dialogue History Matters! Personalized Response Selectionin Multi-turn
Retrieval-based Chatbots [62.295373408415365]
We propose a personalized hybrid matching network (PHMN) for context-response matching.
Our contributions are two-fold: 1) our model extracts personalized wording behaviors from user-specific dialogue history as extra matching information.
We evaluate our model on two large datasets with user identification, i.e., personalized dialogue Corpus Ubuntu (P- Ubuntu) and personalized Weibo dataset (P-Weibo)
arXiv Detail & Related papers (2021-03-17T09:42:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.