Adversarial contamination of networks in the setting of vertex
nomination: a new trimming method
- URL: http://arxiv.org/abs/2208.09710v1
- Date: Sat, 20 Aug 2022 15:32:04 GMT
- Title: Adversarial contamination of networks in the setting of vertex
nomination: a new trimming method
- Authors: Sheyda Peyman, Minh Tang, Vince Lyzinski
- Abstract summary: spectral graph embeddings provide good algorithmic performance and flexible settings.
We propose a new trimming method that operates in model space which can address both block structure contamination and white noise contamination.
This model trimming is more amenable to theoretical analysis while also demonstrating superior performance in a number of simulations.
- Score: 5.915837770869619
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: As graph data becomes more ubiquitous, the need for robust inferential graph
algorithms to operate in these complex data domains is crucial. In many cases
of interest, inference is further complicated by the presence of adversarial
data contamination. The effect of the adversary is frequently to change the
data distribution in ways that negatively affect statistical and algorithmic
performance. We study this phenomenon in the context of vertex nomination, a
semi-supervised information retrieval task for network data. Here, a common
suite of methods relies on spectral graph embeddings, which have been shown to
provide both good algorithmic performance and flexible settings in which
regularization techniques can be implemented to help mitigate the effect of an
adversary. Many current regularization methods rely on direct network trimming
to effectively excise the adversarial contamination, although this direct
trimming often gives rise to complicated dependency structures in the resulting
graph. We propose a new trimming method that operates in model space which can
address both block structure contamination and white noise contamination
(contamination whose distribution is unknown). This model trimming is more
amenable to theoretical analysis while also demonstrating superior performance
in a number of simulations, compared to direct trimming.
Related papers
- Towards Multi-view Graph Anomaly Detection with Similarity-Guided Contrastive Clustering [35.1801853090859]
Anomaly detection on graphs plays an important role in many real-world applications.
We propose an autoencoder-based clustering framework regularized by a similarity-guided contrastive loss to detect anomalous nodes.
arXiv Detail & Related papers (2024-09-15T15:41:59Z) - A convolutional neural network approach to deblending seismic data [1.5488464287814563]
We present a data-driven deep learning-based method for fast and efficient seismic deblending.
A convolutional neural network (CNN) is designed according to the special character of seismic data.
After training and validation of the network, seismic deblending can be performed in near real time.
arXiv Detail & Related papers (2024-09-12T10:54:35Z) - Malicious Internet Entity Detection Using Local Graph Inference [0.4893345190925178]
Detection of malicious behavior in a large network is a challenging problem for machine learning in computer security.
Current cybersec-tailored approaches are still limited in expressivity, and methods successful in other domains do not scale well for large volumes of data.
This work proposes a new perspective for learning from graph data that is modeling network entity interactions as a large heterogeneous graph.
arXiv Detail & Related papers (2024-08-06T16:35:25Z) - Hierarchical Over-the-Air Federated Learning with Awareness of
Interference and Data Heterogeneity [3.8798345704175534]
We introduce a scalable transmission scheme that efficiently uses a single wireless resource through over-the-air computation.
We show that despite the interference and the data heterogeneity, the proposed scheme achieves high learning accuracy and can significantly outperform the conventional hierarchical algorithm.
arXiv Detail & Related papers (2024-01-02T21:43:01Z) - CONVERT:Contrastive Graph Clustering with Reliable Augmentation [110.46658439733106]
We propose a novel CONtrastiVe Graph ClustEring network with Reliable AugmenTation (CONVERT)
In our method, the data augmentations are processed by the proposed reversible perturb-recover network.
To further guarantee the reliability of semantics, a novel semantic loss is presented to constrain the network.
arXiv Detail & Related papers (2023-08-17T13:07:09Z) - Direct Embedding of Temporal Network Edges via Time-Decayed Line Graphs [51.51417735550026]
Methods for machine learning on temporal networks generally exhibit at least one of two limitations.
We present a simple method that avoids both shortcomings: construct the line graph of the network, which includes a node for each interaction, and weigh the edges of this graph based on the difference in time between interactions.
Empirical results on real-world networks demonstrate our method's efficacy and efficiency on both edge classification and temporal link prediction.
arXiv Detail & Related papers (2022-09-30T18:24:13Z) - Interpolation-based Correlation Reduction Network for Semi-Supervised
Graph Learning [49.94816548023729]
We propose a novel graph contrastive learning method, termed Interpolation-based Correlation Reduction Network (ICRN)
In our method, we improve the discriminative capability of the latent feature by enlarging the margin of decision boundaries.
By combining the two settings, we extract rich supervision information from both the abundant unlabeled nodes and the rare yet valuable labeled nodes for discnative representation learning.
arXiv Detail & Related papers (2022-06-06T14:26:34Z) - Optimal Propagation for Graph Neural Networks [51.08426265813481]
We propose a bi-level optimization approach for learning the optimal graph structure.
We also explore a low-rank approximation model for further reducing the time complexity.
arXiv Detail & Related papers (2022-05-06T03:37:00Z) - Convolutional generative adversarial imputation networks for
spatio-temporal missing data in storm surge simulations [86.5302150777089]
Generative Adversarial Imputation Nets (GANs) and GAN-based techniques have attracted attention as unsupervised machine learning methods.
We name our proposed method as Con Conval Generative Adversarial Imputation Nets (Conv-GAIN)
arXiv Detail & Related papers (2021-11-03T03:50:48Z) - Latent Network Embedding via Adversarial Auto-encoders [15.656374849760734]
We propose a latent network embedding model based on adversarial graph auto-encoders.
Under this framework, the problem of discovering latent structures is formulated as inferring the latent ties from partial observations.
arXiv Detail & Related papers (2021-09-30T16:49:46Z) - Learning Neural Causal Models with Active Interventions [83.44636110899742]
We introduce an active intervention-targeting mechanism which enables a quick identification of the underlying causal structure of the data-generating process.
Our method significantly reduces the required number of interactions compared with random intervention targeting.
We demonstrate superior performance on multiple benchmarks from simulated to real-world data.
arXiv Detail & Related papers (2021-09-06T13:10:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.