Direct Embedding of Temporal Network Edges via Time-Decayed Line Graphs
- URL: http://arxiv.org/abs/2210.00032v1
- Date: Fri, 30 Sep 2022 18:24:13 GMT
- Title: Direct Embedding of Temporal Network Edges via Time-Decayed Line Graphs
- Authors: Sudhanshu Chanpuriya, Ryan A. Rossi, Sungchul Kim, Tong Yu, Jane
Hoffswell, Nedim Lipka, Shunan Guo, and Cameron Musco
- Abstract summary: Methods for machine learning on temporal networks generally exhibit at least one of two limitations.
We present a simple method that avoids both shortcomings: construct the line graph of the network, which includes a node for each interaction, and weigh the edges of this graph based on the difference in time between interactions.
Empirical results on real-world networks demonstrate our method's efficacy and efficiency on both edge classification and temporal link prediction.
- Score: 51.51417735550026
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Temporal networks model a variety of important phenomena involving timed
interactions between entities. Existing methods for machine learning on
temporal networks generally exhibit at least one of two limitations. First,
time is assumed to be discretized, so if the time data is continuous, the user
must determine the discretization and discard precise time information. Second,
edge representations can only be calculated indirectly from the nodes, which
may be suboptimal for tasks like edge classification. We present a simple
method that avoids both shortcomings: construct the line graph of the network,
which includes a node for each interaction, and weigh the edges of this graph
based on the difference in time between interactions. From this derived graph,
edge representations for the original network can be computed with efficient
classical methods. The simplicity of this approach facilitates explicit
theoretical analysis: we can constructively show the effectiveness of our
method's representations for a natural synthetic model of temporal networks.
Empirical results on real-world networks demonstrate our method's efficacy and
efficiency on both edge classification and temporal link prediction.
Related papers
- Temporal Aggregation and Propagation Graph Neural Networks for Dynamic
Representation [67.26422477327179]
Temporal graphs exhibit dynamic interactions between nodes over continuous time.
We propose a novel method of temporal graph convolution with the whole neighborhood.
Our proposed TAP-GNN outperforms existing temporal graph methods by a large margin in terms of both predictive performance and online inference latency.
arXiv Detail & Related papers (2023-04-15T08:17:18Z) - Taming Local Effects in Graph-based Spatiotemporal Forecasting [28.30604130617646]
Stemporal graph neural networks have shown to be effective in time series forecasting applications.
This paper aims to understand the interplay between globality and locality in graph-basedtemporal forecasting.
We propose a methodological framework to rationalize the practice of including trainable node embeddings in such architectures.
arXiv Detail & Related papers (2023-02-08T14:18:56Z) - Efficient-Dyn: Dynamic Graph Representation Learning via Event-based
Temporal Sparse Attention Network [2.0047096160313456]
Dynamic graph neural networks have received more and more attention from researchers.
We propose a novel dynamic graph neural network, Efficient-Dyn.
It adaptively encodes temporal information into a sequence of patches with an equal amount of temporal-topological structure.
arXiv Detail & Related papers (2022-01-04T23:52:24Z) - Spatio-Temporal Joint Graph Convolutional Networks for Traffic
Forecasting [75.10017445699532]
Recent have shifted their focus towards formulating traffic forecasting as atemporal graph modeling problem.
We propose a novel approach for accurate traffic forecasting on road networks over multiple future time steps.
arXiv Detail & Related papers (2021-11-25T08:45:14Z) - Temporal Graph Network Embedding with Causal Anonymous Walks
Representations [54.05212871508062]
We propose a novel approach for dynamic network representation learning based on Temporal Graph Network.
For evaluation, we provide a benchmark pipeline for the evaluation of temporal network embeddings.
We show the applicability and superior performance of our model in the real-world downstream graph machine learning task provided by one of the top European banks.
arXiv Detail & Related papers (2021-08-19T15:39:52Z) - Mitigating Performance Saturation in Neural Marked Point Processes:
Architectures and Loss Functions [50.674773358075015]
We propose a simple graph-based network structure called GCHP, which utilizes only graph convolutional layers.
We show that GCHP can significantly reduce training time and the likelihood ratio loss with interarrival time probability assumptions can greatly improve the model performance.
arXiv Detail & Related papers (2021-07-07T16:59:14Z) - TempNodeEmb:Temporal Node Embedding considering temporal edge influence
matrix [0.8941624592392746]
Predicting future links among the nodes in temporal networks reveals an important aspect of the evolution of temporal networks.
Some approaches consider a simplified representation of temporal networks but in high-dimensional and generally sparse matrices.
We propose a new node embedding technique which exploits the evolving nature of the networks considering a simple three-layer graph neural network at each time step.
arXiv Detail & Related papers (2020-08-16T15:39:07Z) - Time-varying Graph Representation Learning via Higher-Order Skip-Gram
with Negative Sampling [0.456877715768796]
We build upon the fact that the skip-gram embedding approach implicitly performs a matrix factorization.
We show that higher-order skip-gram with negative sampling is able to disentangle the role of nodes and time.
We empirically evaluate our approach using time-resolved face-to-face proximity data, showing that the learned time-varying graph representations outperform state-of-the-art methods.
arXiv Detail & Related papers (2020-06-25T12:04:48Z) - Block-Approximated Exponential Random Graphs [77.4792558024487]
An important challenge in the field of exponential random graphs (ERGs) is the fitting of non-trivial ERGs on large graphs.
We propose an approximative framework to such non-trivial ERGs that result in dyadic independence (i.e., edge independent) distributions.
Our methods are scalable to sparse graphs consisting of millions of nodes.
arXiv Detail & Related papers (2020-02-14T11:42:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.