Alexa, Predict My Flight Delay
- URL: http://arxiv.org/abs/2208.09921v1
- Date: Sun, 21 Aug 2022 17:01:48 GMT
- Title: Alexa, Predict My Flight Delay
- Authors: Sia Gholami, Saba Khashe
- Abstract summary: This research study develops a flight delay prediction system by analyzing data from domestic flights inside the United States of America.
The proposed models learn about the factors that cause flight delays and cancellations and the link between departure and arrival delays.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Airlines are critical today for carrying people and commodities on time. Any
delay in the schedule of these planes can potentially disrupt the business and
trade of thousands of employees at any given time. Therefore, precise flight
delay prediction is beneficial for the aviation industry and passenger travel.
Recent research has focused on using artificial intelligence algorithms to
predict the possibility of flight delays. Earlier prediction algorithms were
designed for a specific air route or airfield. Many present flight delay
prediction algorithms rely on tiny samples and are challenging to understand,
allowing almost no room for machine learning implementation. This research
study develops a flight delay prediction system by analyzing data from domestic
flights inside the United States of America. The proposed models learn about
the factors that cause flight delays and cancellations and the link between
departure and arrival delays.
Related papers
- Extralonger: Toward a Unified Perspective of Spatial-Temporal Factors for Extra-Long-Term Traffic Forecasting [69.4265346261936]
We introduce Extralonger, which unifies temporal and spatial factors.
It notably extends the prediction horizon to a week on real-world benchmarks.
It sets new standards in long-term and extra-long-term scenarios.
arXiv Detail & Related papers (2024-10-30T04:28:20Z) - Flight Delay Prediction using Hybrid Machine Learning Approach: A Case Study of Major Airlines in the United States [0.0]
This research proposes a hybrid approach that combines the feature of deep learning and classic machine learning techniques.
Several machine learning algorithms are applied on flight data to validate the results of proposed model.
The study also includes an extensive analysis of the flight data and each model to obtain insightful results for U.S. airlines.
arXiv Detail & Related papers (2024-09-01T04:18:41Z) - Airport Delay Prediction with Temporal Fusion Transformers [24.280246809961945]
This study proposes to apply the novel Temporal Fusion Transformer model and predict numerical airport arrival delays at quarter hour level for U.S. top 30 airports.
Inputs to our model include airport demand and capacity forecasts, historic airport operation efficiency information, airport wind and visibility conditions, as well as enroute weather and traffic conditions.
arXiv Detail & Related papers (2024-05-14T03:27:15Z) - Streaming Motion Forecasting for Autonomous Driving [71.7468645504988]
We introduce a benchmark that queries future trajectories on streaming data and we refer to it as "streaming forecasting"
Our benchmark inherently captures the disappearance and re-appearance of agents, which is a safety-critical problem yet overlooked by snapshot-based benchmarks.
We propose a plug-and-play meta-algorithm called "Predictive Streamer" that can adapt any snapshot-based forecaster into a streaming forecaster.
arXiv Detail & Related papers (2023-10-02T17:13:16Z) - Deep Learning Aided Packet Routing in Aeronautical Ad-Hoc Networks
Relying on Real Flight Data: From Single-Objective to Near-Pareto
Multi-Objective Optimization [79.96177511319713]
We invoke deep learning (DL) to assist routing in aeronautical ad-hoc networks (AANETs)
A deep neural network (DNN) is conceived for mapping the local geographic information observed by the forwarding node into the information required for determining the optimal next hop.
We extend the DL-aided routing algorithm to a multi-objective scenario, where we aim for simultaneously minimizing the delay, maximizing the path capacity, and maximizing the path lifetime.
arXiv Detail & Related papers (2021-10-28T14:18:22Z) - DAE : Discriminatory Auto-Encoder for multivariate time-series anomaly
detection in air transportation [68.8204255655161]
We propose a novel anomaly detection model called Discriminatory Auto-Encoder (DAE)
It uses the baseline of a regular LSTM-based auto-encoder but with several decoders, each getting data of a specific flight phase.
Results show that the DAE achieves better results in both accuracy and speed of detection.
arXiv Detail & Related papers (2021-09-08T14:07:55Z) - Predicting Flight Delay with Spatio-Temporal Trajectory Convolutional
Network and Airport Situational Awareness Map [20.579487904188802]
We propose a vision-based solution to achieve a high forecasting accuracy, applicable to the airport.
We propose an end-to-end deep learning architecture, TrajCNN, which captures both the spatial and temporal information from the situational awareness map.
Our proposed framework obtained a good result (around 18 minutes error) for predicting flight departure delay at Los Angeles International Airport.
arXiv Detail & Related papers (2021-05-19T07:38:57Z) - Spatio-Temporal Data Mining for Aviation Delay Prediction [15.621546618044173]
We present a novel aviation delay prediction system based on stacked Long Short-Term Memory (LSTM) networks for commercial flights.
The system learns from historical trajectories from automatic dependent surveillance-broadcast (ADS-B) messages.
Compared with previous schemes, our approach is demonstrated to be more robust and accurate for large hub airports.
arXiv Detail & Related papers (2021-03-20T18:37:06Z) - Right Decisions from Wrong Predictions: A Mechanism Design Alternative
to Individual Calibration [107.15813002403905]
Decision makers often need to rely on imperfect probabilistic forecasts.
We propose a compensation mechanism ensuring that the forecasted utility matches the actually accrued utility.
We demonstrate an application showing how passengers could confidently optimize individual travel plans based on flight delay probabilities.
arXiv Detail & Related papers (2020-11-15T08:22:39Z) - T$^2$-Net: A Semi-supervised Deep Model for Turbulence Forecasting [65.498967509424]
Air turbulence forecasting can help airlines avoid hazardous turbulence, guide routes that keep passengers safe, maximize efficiency, reduce costs.
Traditional forecasting approaches rely on painstakingly customized turbulence indexes, which are less effective in dynamic and complex weather conditions.
We propose a machine learning based turbulence forecasting system due to two challenges: (1) Complex-temporal correlations, and (2) scarcity, very limited turbulence labels can be obtained.
arXiv Detail & Related papers (2020-10-26T21:14:15Z) - Flight Time Prediction for Fuel Loading Decisions with a Deep Learning
Approach [3.285168337194676]
Airlines are constantly seeking new technologies and optimizing flight operations to reduce fuel consumption.
Excess fuel is loaded by dispatchers and (or) pilots to handle fuel consumption uncertainties.
We develop a novel spatial weighted recurrent neural network model to provide better flight time predictions.
arXiv Detail & Related papers (2020-05-12T11:05:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.