論文の概要: Meta-Causal Feature Learning for Out-of-Distribution Generalization
- arxiv url: http://arxiv.org/abs/2208.10156v1
- Date: Mon, 22 Aug 2022 09:07:02 GMT
- ステータス: 処理完了
- システム内更新日: 2022-08-23 13:35:48.620936
- Title: Meta-Causal Feature Learning for Out-of-Distribution Generalization
- Title(参考訳): 分布外一般化のためのメタ因果特徴学習
- Authors: Yuqing Wang, Xiangxian Li, Zhuang Qi, Jingyu Li, Xuelong Li, Xiangxu
Meng, Lei Meng
- Abstract要約: 本稿では,協調タスク生成モジュール (BTG) とメタ因果特徴学習モジュール (MCFL) を含む,バランス付きメタ因果学習器 (BMCL) を提案する。
BMCLは、分類のためのクラス不変の視覚領域を効果的に識別し、最先端の手法の性能を向上させるための一般的なフレームワークとして機能する。
- 参考スコア(独自算出の注目度): 71.38239243414091
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Causal inference has become a powerful tool to handle the out-of-distribution
(OOD) generalization problem, which aims to extract the invariant features.
However, conventional methods apply causal learners from multiple data splits,
which may incur biased representation learning from imbalanced data
distributions and difficulty in invariant feature learning from heterogeneous
sources. To address these issues, this paper presents a balanced meta-causal
learner (BMCL), which includes a balanced task generation module (BTG) and a
meta-causal feature learning module (MCFL). Specifically, the BTG module learns
to generate balanced subsets by a self-learned partitioning algorithm with
constraints on the proportions of sample classes and contexts. The MCFL module
trains a meta-learner adapted to different distributions. Experiments conducted
on NICO++ dataset verified that BMCL effectively identifies the class-invariant
visual regions for classification and may serve as a general framework to
improve the performance of the state-of-the-art methods.
- Abstract(参考訳): 因果推論は分布外一般化問題(OOD)を扱う強力なツールとなり、不変な特徴を抽出することを目指している。
しかし、従来の手法では、複数のデータ分割から因果学習を行い、不均衡なデータ分布からのバイアス付き表現学習と、不均質な情報源からの不変特徴学習の難しさをもたらす。
これらの課題に対処するため,本論文では,バランス化されたタスク生成モジュール(BTG)とメタ因果的特徴学習モジュール(MCFL)を含む,バランスされたメタ因果学習者(BMCL)を提案する。
具体的には、BTGモジュールは、サンプルクラスとコンテキストの比率に制約のある自己学習分割アルゴリズムによってバランスの取れたサブセットを生成することを学習する。
MCFLモジュールは、異なる分布に適応したメタリアナーを訓練する。
nico++データセットで実施した実験により、bmclは分類のためにクラス不変な視覚領域を効果的に識別できることが確認された。
関連論文リスト
- Graph-based Unsupervised Disentangled Representation Learning via Multimodal Large Language Models [42.17166746027585]
複素データ内の因子化属性とその相互関係を学習するための双方向重み付きグラフベースフレームワークを提案する。
具体的には、グラフの初期ノードとして要素を抽出する$beta$-VAEベースのモジュールを提案する。
これらの相補的加群を統合することで、我々は細粒度、実用性、教師なしの絡み合いをうまく達成できる。
論文 参考訳(メタデータ) (2024-07-26T15:32:21Z) - cDP-MIL: Robust Multiple Instance Learning via Cascaded Dirichlet Process [23.266122629592807]
マルチプル・インスタンス・ラーニング (MIL) は全スライス・ヒストパラメトリック・イメージ (WSI) 解析に広く応用されている。
MILの既存の集約戦略は、主にインスタンス間の一階距離に依存するが、各インスタンスの真の特徴分布を正確に近似することができない。
本稿では、複数のインスタンス学習のための新しいベイズ非パラメトリックフレームワークを提案し、WSIのインスタンス・ツー・バッグ特性を組み込むためにディリクレ・プロセスのカスケード(cDP)を採用する。
論文 参考訳(メタデータ) (2024-07-16T07:28:39Z) - Self-Supervised Representation Learning with Meta Comprehensive
Regularization [11.387994024747842]
既存の自己管理フレームワークに組み込まれたCompMod with Meta Comprehensive Regularization (MCR)というモジュールを導入する。
提案したモデルを双方向最適化機構により更新し,包括的特徴を捉える。
本稿では,情報理論と因果対実的視点から提案手法の理論的支援を行う。
論文 参考訳(メタデータ) (2024-03-03T15:53:48Z) - Aggregation Weighting of Federated Learning via Generalization Bound
Estimation [65.8630966842025]
フェデレートラーニング(FL)は通常、サンプル比率によって決定される重み付けアプローチを使用して、クライアントモデルパラメータを集約する。
上記の重み付け法を,各局所モデルの一般化境界を考慮した新しい戦略に置き換える。
論文 参考訳(メタデータ) (2023-11-10T08:50:28Z) - Learning Invariant Molecular Representation in Latent Discrete Space [52.13724532622099]
本稿では,分散シフトに対する不変性とロバスト性を示す分子表現を学習するための新しい枠組みを提案する。
我々のモデルは、様々な分布シフトが存在する場合に、最先端のベースラインに対してより強力な一般化を実現する。
論文 参考訳(メタデータ) (2023-10-22T04:06:44Z) - Modular Gaussian Processes for Transfer Learning [0.0]
モジュラー変動ガウス過程(GP)に基づく移動学習のためのフレームワークを提案する。
我々は,データを再考することなく,アンサンブルGPモデルを構築するモジュールベースの手法を開発した。
本手法は、望ましくないデータの集中化を回避し、計算コストの増大を低減し、学習後の不確実性指標の伝達を可能にする。
論文 参考訳(メタデータ) (2021-10-26T09:15:18Z) - Revisiting Unsupervised Meta-Learning: Amplifying or Compensating for
the Characteristics of Few-Shot Tasks [30.893785366366078]
我々は,限られたデータを用いて視覚認識システムを構築する,少数ショット画像分類への実践的アプローチを開発した。
基本クラスセットラベルは不要であり、識別的埋め込みは教師なしの方法でメタ学習される可能性がある。
数ショットの学習ベンチマークの実験では、従来の手法よりも4~10%のパフォーマンス差で、アプローチが優れていることが確認された。
論文 参考訳(メタデータ) (2020-11-30T10:08:35Z) - Out-of-distribution Generalization via Partial Feature Decorrelation [72.96261704851683]
本稿では,特徴分解ネットワークと対象画像分類モデルとを協調的に最適化する,PFDL(Partial Feature Deorrelation Learning)アルゴリズムを提案する。
実世界のデータセットを用いた実験により,OOD画像分類データセットにおけるバックボーンモデルの精度が向上することを示した。
論文 参考訳(メタデータ) (2020-07-30T05:48:48Z) - Boosting Few-Shot Learning With Adaptive Margin Loss [109.03665126222619]
本稿では,数ショット学習問題に対するメートル法に基づくメタラーニング手法の一般化能力を改善するための適応的マージン原理を提案する。
大規模な実験により,提案手法は,現在のメートル法に基づくメタラーニング手法の性能を向上させることができることが示された。
論文 参考訳(メタデータ) (2020-05-28T07:58:41Z) - Invariant Causal Prediction for Block MDPs [106.63346115341862]
環境全体にわたる一般化は、実世界の課題への強化学習アルゴリズムの適用の成功に不可欠である。
本稿では,多環境環境における新しい観測を一般化するモデル不適合状態抽象化(MISA)を学習するための不変予測法を提案する。
論文 参考訳(メタデータ) (2020-03-12T21:03:01Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。