An anomaly detection approach for backdoored neural networks: face
recognition as a case study
- URL: http://arxiv.org/abs/2208.10231v1
- Date: Mon, 22 Aug 2022 12:14:13 GMT
- Title: An anomaly detection approach for backdoored neural networks: face
recognition as a case study
- Authors: Alexander Unnervik and S\'ebastien Marcel
- Abstract summary: We propose a novel backdoored network detection method based on the principle of anomaly detection.
We test our method on a novel dataset of backdoored networks and report detectability results with perfect scores.
- Score: 77.92020418343022
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Backdoor attacks allow an attacker to embed functionality jeopardizing proper
behavior of any algorithm, machine learning or not. This hidden functionality
can remain inactive for normal use of the algorithm until activated by the
attacker. Given how stealthy backdoor attacks are, consequences of these
backdoors could be disastrous if such networks were to be deployed for
applications as critical as border or access control. In this paper, we propose
a novel backdoored network detection method based on the principle of anomaly
detection, involving access to the clean part of the training data and the
trained network. We highlight its promising potential when considering various
triggers, locations and identity pairs, without the need to make any
assumptions on the nature of the backdoor and its setup. We test our method on
a novel dataset of backdoored networks and report detectability results with
perfect scores.
Related papers
- Model Pairing Using Embedding Translation for Backdoor Attack Detection on Open-Set Classification Tasks [63.269788236474234]
We propose to use model pairs on open-set classification tasks for detecting backdoors.
We show that this score, can be an indicator for the presence of a backdoor despite models being of different architectures.
This technique allows for the detection of backdoors on models designed for open-set classification tasks, which is little studied in the literature.
arXiv Detail & Related papers (2024-02-28T21:29:16Z) - Untargeted Backdoor Attack against Object Detection [69.63097724439886]
We design a poison-only backdoor attack in an untargeted manner, based on task characteristics.
We show that, once the backdoor is embedded into the target model by our attack, it can trick the model to lose detection of any object stamped with our trigger patterns.
arXiv Detail & Related papers (2022-11-02T17:05:45Z) - Verifying Neural Networks Against Backdoor Attacks [7.5033553032683855]
We propose an approach to verify whether a given neural network is free of backdoor with a certain level of success rate.
Experiment results show that our approach effectively verifies the absence of backdoor or generates backdoor triggers.
arXiv Detail & Related papers (2022-05-14T07:25:54Z) - Check Your Other Door! Establishing Backdoor Attacks in the Frequency
Domain [80.24811082454367]
We show the advantages of utilizing the frequency domain for establishing undetectable and powerful backdoor attacks.
We also show two possible defences that succeed against frequency-based backdoor attacks and possible ways for the attacker to bypass them.
arXiv Detail & Related papers (2021-09-12T12:44:52Z) - Black-box Detection of Backdoor Attacks with Limited Information and
Data [56.0735480850555]
We propose a black-box backdoor detection (B3D) method to identify backdoor attacks with only query access to the model.
In addition to backdoor detection, we also propose a simple strategy for reliable predictions using the identified backdoored models.
arXiv Detail & Related papers (2021-03-24T12:06:40Z) - WaNet -- Imperceptible Warping-based Backdoor Attack [20.289889150949836]
A third-party model can be poisoned in training to work well in normal conditions but behave maliciously when a trigger pattern appears.
In this paper, we propose using warping-based triggers to attack third-party models.
The proposed backdoor outperforms the previous methods in a human inspection test by a wide margin, proving its stealthiness.
arXiv Detail & Related papers (2021-02-20T15:25:36Z) - Detecting Backdoors in Neural Networks Using Novel Feature-Based Anomaly
Detection [16.010654200489913]
This paper proposes a new defense against neural network backdooring attacks.
It is based on the intuition that the feature extraction layers of a backdoored network embed new features to detect the presence of a trigger.
To detect backdoors, the proposed defense uses two synergistic anomaly detectors trained on clean validation data.
arXiv Detail & Related papers (2020-11-04T20:33:51Z) - Backdoor Learning: A Survey [75.59571756777342]
Backdoor attack intends to embed hidden backdoor into deep neural networks (DNNs)
Backdoor learning is an emerging and rapidly growing research area.
This paper presents the first comprehensive survey of this realm.
arXiv Detail & Related papers (2020-07-17T04:09:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.