Calibrated Bagging Deep Learning for Image Semantic Segmentation: A Case
Study on COVID-19 Chest X-ray Image
- URL: http://arxiv.org/abs/2206.00002v1
- Date: Fri, 27 May 2022 20:06:45 GMT
- Title: Calibrated Bagging Deep Learning for Image Semantic Segmentation: A Case
Study on COVID-19 Chest X-ray Image
- Authors: Lucy Nwosu, Xiangfang Li, Lijun Qian, Seungchan Kim, Xishuang Dong
- Abstract summary: Imaging tests such as chest X-ray (CXR) and computed tomography (CT) can provide useful information to clinical staff.
Deep learning has been applied to perform COVID-19 infection region segmentation and disease classification.
We propose a novel ensemble deep learning model through integrating bagging deep learning and model calibration.
- Score: 3.135883872525168
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes
coronavirus disease 2019 (COVID-19). Imaging tests such as chest X-ray (CXR)
and computed tomography (CT) can provide useful information to clinical staff
for facilitating a diagnosis of COVID-19 in a more efficient and comprehensive
manner. As a breakthrough of artificial intelligence (AI), deep learning has
been applied to perform COVID-19 infection region segmentation and disease
classification by analyzing CXR and CT data. However, prediction uncertainty of
deep learning models for these tasks, which is very important to
safety-critical applications like medical image processing, has not been
comprehensively investigated. In this work, we propose a novel ensemble deep
learning model through integrating bagging deep learning and model calibration
to not only enhance segmentation performance, but also reduce prediction
uncertainty. The proposed method has been validated on a large dataset that is
associated with CXR image segmentation. Experimental results demonstrate that
the proposed method can improve the segmentation performance, as well as
decrease prediction uncertainties.
Related papers
- Enhancing COVID-19 Severity Analysis through Ensemble Methods [13.792760290422185]
This paper presents a domain knowledge-based pipeline for extracting regions of infection in COVID-19 patients.
The severity of the infection is then classified into different categories using an ensemble of three machine-learning models.
The proposed system was evaluated on a validation dataset in the AI-Enabled Medical Image Analysis Workshop and COVID-19 Diagnosis Competition.
arXiv Detail & Related papers (2023-03-13T13:59:47Z) - Optimising Chest X-Rays for Image Analysis by Identifying and Removing
Confounding Factors [49.005337470305584]
During the COVID-19 pandemic, the sheer volume of imaging performed in an emergency setting for COVID-19 diagnosis has resulted in a wide variability of clinical CXR acquisitions.
The variable quality of clinically-acquired CXRs within publicly available datasets could have a profound effect on algorithm performance.
We propose a simple and effective step-wise approach to pre-processing a COVID-19 chest X-ray dataset to remove undesired biases.
arXiv Detail & Related papers (2022-08-22T13:57:04Z) - Improving Classification Model Performance on Chest X-Rays through Lung
Segmentation [63.45024974079371]
We propose a deep learning approach to enhance abnormal chest x-ray (CXR) identification performance through segmentations.
Our approach is designed in a cascaded manner and incorporates two modules: a deep neural network with criss-cross attention modules (XLSor) for localizing lung region in CXR images and a CXR classification model with a backbone of a self-supervised momentum contrast (MoCo) model pre-trained on large-scale CXR data sets.
arXiv Detail & Related papers (2022-02-22T15:24:06Z) - Deep Metric Learning-based Image Retrieval System for Chest Radiograph
and its Clinical Applications in COVID-19 [12.584626589565522]
Chest radiograph (CXR) has been playing a crucial role in COVID-19 patient triaging, diagnosing and monitoring.
Considering the mixed and unspecific signals in CXR, an image retrieval model of CXR that provides both similar images and associated clinical information can be more clinically meaningful.
In this work we develop a novel CXR image retrieval model based on deep metric learning.
arXiv Detail & Related papers (2020-11-26T03:16:48Z) - COVIDNet-CT: A Tailored Deep Convolutional Neural Network Design for
Detection of COVID-19 Cases from Chest CT Images [75.74756992992147]
We introduce COVIDNet-CT, a deep convolutional neural network architecture that is tailored for detection of COVID-19 cases from chest CT images.
We also introduce COVIDx-CT, a benchmark CT image dataset derived from CT imaging data collected by the China National Center for Bioinformation.
arXiv Detail & Related papers (2020-09-08T15:49:55Z) - Synergistic Learning of Lung Lobe Segmentation and Hierarchical
Multi-Instance Classification for Automated Severity Assessment of COVID-19
in CT Images [61.862364277007934]
We propose a synergistic learning framework for automated severity assessment of COVID-19 in 3D CT images.
A multi-task deep network (called M$2$UNet) is then developed to assess the severity of COVID-19 patients.
Our M$2$UNet consists of a patch-level encoder, a segmentation sub-network for lung lobe segmentation, and a classification sub-network for severity assessment.
arXiv Detail & Related papers (2020-05-08T03:16:15Z) - Diagnosis of Coronavirus Disease 2019 (COVID-19) with Structured Latent
Multi-View Representation Learning [48.05232274463484]
Recently, the outbreak of Coronavirus Disease 2019 (COVID-19) has spread rapidly across the world.
Due to the large number of affected patients and heavy labor for doctors, computer-aided diagnosis with machine learning algorithm is urgently needed.
In this study, we propose to conduct the diagnosis of COVID-19 with a series of features extracted from CT images.
arXiv Detail & Related papers (2020-05-06T15:19:15Z) - Automated diagnosis of COVID-19 with limited posteroanterior chest X-ray
images using fine-tuned deep neural networks [4.294650528226683]
COVID-19 is a respiratory syndrome that resembles pneumonia.
Scientists, researchers and healthcare experts are contributing for faster and automated diagnosis of COVID-19 by identifying pulmonary infections.
This article presents the random oversampling and weighted class loss function approach for unbiased fine-tuned learning (transfer learning) in various state-of-the-art deep learning approaches.
arXiv Detail & Related papers (2020-04-23T10:24:34Z) - Residual Attention U-Net for Automated Multi-Class Segmentation of
COVID-19 Chest CT Images [46.844349956057776]
coronavirus disease 2019 (COVID-19) has been spreading rapidly around the world and caused significant impact on the public health and economy.
There is still lack of studies on effectively quantifying the lung infection caused by COVID-19.
We propose a novel deep learning algorithm for automated segmentation of multiple COVID-19 infection regions.
arXiv Detail & Related papers (2020-04-12T16:24:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.