Semi-Blind Source Separation with Learned Constraints
- URL: http://arxiv.org/abs/2209.13585v1
- Date: Tue, 27 Sep 2022 17:58:23 GMT
- Title: Semi-Blind Source Separation with Learned Constraints
- Authors: R\'emi Carloni Gertosio, J\'er\^ome Bobin, Fabio Acero
- Abstract summary: Blind source separation (BSS) algorithms are unsupervised methods for hyperspectral data analysis.
In this article, we investigate a semi-supervised source separation approach in which we combine a projected alternating least-square algorithm with a learning-based regularization scheme.
We show that this allows for an innovative BSS algorithm, with improved accuracy, which provides physically interpretable solutions.
- Score: 1.2891210250935146
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Blind source separation (BSS) algorithms are unsupervised methods, which are
the cornerstone of hyperspectral data analysis by allowing for physically
meaningful data decompositions. BSS problems being ill-posed, the resolution
requires efficient regularization schemes to better distinguish between the
sources and yield interpretable solutions. For that purpose, we investigate a
semi-supervised source separation approach in which we combine a projected
alternating least-square algorithm with a learning-based regularization scheme.
In this article, we focus on constraining the mixing matrix to belong to a
learned manifold by making use of generative models. Altogether, we show that
this allows for an innovative BSS algorithm, with improved accuracy, which
provides physically interpretable solutions. The proposed method, coined sGMCA,
is tested on realistic hyperspectral astrophysical data in challenging
scenarios involving strong noise, highly correlated spectra and unbalanced
sources. The results highlight the significant benefit of the learned prior to
reduce the leakages between the sources, which allows an overall better
disentanglement.
Related papers
- Distributed Markov Chain Monte Carlo Sampling based on the Alternating
Direction Method of Multipliers [143.6249073384419]
In this paper, we propose a distributed sampling scheme based on the alternating direction method of multipliers.
We provide both theoretical guarantees of our algorithm's convergence and experimental evidence of its superiority to the state-of-the-art.
In simulation, we deploy our algorithm on linear and logistic regression tasks and illustrate its fast convergence compared to existing gradient-based methods.
arXiv Detail & Related papers (2024-01-29T02:08:40Z) - Stability and Generalization of the Decentralized Stochastic Gradient
Descent Ascent Algorithm [80.94861441583275]
We investigate the complexity of the generalization bound of the decentralized gradient descent (D-SGDA) algorithm.
Our results analyze the impact of different top factors on the generalization of D-SGDA.
We also balance it with the generalization to obtain the optimal convex-concave setting.
arXiv Detail & Related papers (2023-10-31T11:27:01Z) - Exploiting Temporal Structures of Cyclostationary Signals for
Data-Driven Single-Channel Source Separation [98.95383921866096]
We study the problem of single-channel source separation (SCSS)
We focus on cyclostationary signals, which are particularly suitable in a variety of application domains.
We propose a deep learning approach using a U-Net architecture, which is competitive with the minimum MSE estimator.
arXiv Detail & Related papers (2022-08-22T14:04:56Z) - Deep Equilibrium Assisted Block Sparse Coding of Inter-dependent
Signals: Application to Hyperspectral Imaging [71.57324258813675]
A dataset of inter-dependent signals is defined as a matrix whose columns demonstrate strong dependencies.
A neural network is employed to act as structure prior and reveal the underlying signal interdependencies.
Deep unrolling and Deep equilibrium based algorithms are developed, forming highly interpretable and concise deep-learning-based architectures.
arXiv Detail & Related papers (2022-03-29T21:00:39Z) - Pretrained Cost Model for Distributed Constraint Optimization Problems [37.79733538931925]
Distributed Constraint Optimization Problems (DCOPs) are an important subclass of optimization problems.
We propose a novel directed acyclic graph schema representation for DCOPs and leverage the Graph Attention Networks (GATs) to embed graph representations.
Our model, GAT-PCM, is then pretrained with optimally labelled data in an offline manner, so as to boost a broad range of DCOP algorithms.
arXiv Detail & Related papers (2021-12-08T09:24:10Z) - Resource-constrained Federated Edge Learning with Heterogeneous Data:
Formulation and Analysis [8.863089484787835]
We propose a distributed approximate Newton-type Newton-type training scheme, namely FedOVA, to solve the heterogeneous statistical challenge brought by heterogeneous data.
FedOVA decomposes a multi-class classification problem into more straightforward binary classification problems and then combines their respective outputs using ensemble learning.
arXiv Detail & Related papers (2021-10-14T17:35:24Z) - Resource Allocation via Model-Free Deep Learning in Free Space Optical
Communications [119.81868223344173]
The paper investigates the general problem of resource allocation for mitigating channel fading effects in Free Space Optical (FSO) communications.
Under this framework, we propose two algorithms that solve FSO resource allocation problems.
arXiv Detail & Related papers (2020-07-27T17:38:51Z) - Learning while Respecting Privacy and Robustness to Distributional
Uncertainties and Adversarial Data [66.78671826743884]
The distributionally robust optimization framework is considered for training a parametric model.
The objective is to endow the trained model with robustness against adversarially manipulated input data.
Proposed algorithms offer robustness with little overhead.
arXiv Detail & Related papers (2020-07-07T18:25:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.