論文の概要: Comparison of Quantum PUF models
- arxiv url: http://arxiv.org/abs/2208.10599v2
- Date: Tue, 1 Nov 2022 19:36:04 GMT
- ステータス: 処理完了
- システム内更新日: 2023-01-30 04:43:27.471714
- Title: Comparison of Quantum PUF models
- Title(参考訳): 量子PUFモデルの比較
- Authors: Vladlen Galetsky, Soham Ghosh, Christian Deppe and Roberto Ferrara
- Abstract要約: 物理不能関数(英: physical unclonable function、PUF)は、物理系(例えば半導体、結晶など)のハードウェア構造であり、半導体のユニークな識別や暗号プロセスの鍵の確保に使用される。
本稿では,量子トークンベースの認証シミュレータであるQTOKSimの要件を紹介し,その性能を多要素認証プロトコルで検証する。
- 参考スコア(独自算出の注目度): 9.650153007075703
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Physical unclonable functions (PUFs) are hardware structures in a physical
system (e.g. semiconductor, crystals etc.) that are used to enable unique
identification of the semiconductor or to secure keys for cryptographic
processes. A PUF thus generates a noisy secret reproducible at runtime. This
secret can either be used to authenticate the chip, or it is available as a
cryptographic key after removing the noise. Latest advancements in the field of
quantum hardware, in some cases claiming to achieve quantum supremacy, highly
target the fragility of current RSA type classical cryptosystems. As a
solution, one would like to develop Quantum PUFs to mitigate such problem.
There are several approaches for this technology. In our work we compare these
different approaches and introduce the requirements for QTOKSim, a quantum
token based authentication simulator testing its performance on a multi-factor
authentication protocol.
- Abstract(参考訳): 物理不能関数(英: physical unclonable function、PUF)は、物理系(例えば半導体、結晶など)のハードウェア構造であり、半導体のユニークな識別や暗号プロセスの鍵の確保に使用される。
PUFは実行時にノイズの多い秘密の再現を生成する。
この秘密はチップの認証に使用できるか、ノイズを取り除いた後に暗号鍵として利用できる。
量子ハードウェアの分野における最近の進歩は、量子超越性を達成すると主張する場合があり、現在のrsa型古典暗号システムのフレギリティを高いターゲットとしている。
解決策として、そのような問題を緩和するためにQuantum PUFを開発したい。
この技術にはいくつかのアプローチがある。
我々はこれらの異なるアプローチを比較し、量子トークンベースの認証シミュレータQTOKSimの要件を導入し、その性能を多要素認証プロトコルで検証する。
関連論文リスト
- Existential Unforgeability in Quantum Authentication From Quantum Physical Unclonable Functions Based on Random von Neumann Measurement [45.386403865847235]
物理的非閉包関数(PUF)は、固有の非閉包不可能な物理的ランダム性を利用して、ユニークな入出力ペアを生成する。
量子PUF(Quantum PUFs)は、量子状態を入出力ペアとして使用することによって、この概念を拡張している。
ランダムなユニタリQPUFは、量子多項式時間に対する実存的非偽造性を達成できないことを示す。
本稿では,QPUFが非単体量子チャネルとして機能する2番目のモデルを提案する。
論文 参考訳(メタデータ) (2024-04-17T12:16:41Z) - QuantumSEA: In-Time Sparse Exploration for Noise Adaptive Quantum
Circuits [82.50620782471485]
QuantumSEAはノイズ適応型量子回路のインタイムスパース探索である。
1)トレーニング中の暗黙の回路容量と(2)雑音の頑健さの2つの主要な目標を達成することを目的としている。
提案手法は, 量子ゲート数の半減と回路実行の2倍の時間節約で, 最先端の計算結果を確立する。
論文 参考訳(メタデータ) (2024-01-10T22:33:00Z) - Trustworthy Quantum Computation through Quantum Physical Unclonable
Functions [1.539760782452093]
クラウドベースの量子コンピュータ(QC)は、リモートアクセスとプログラミングで容易に利用できる。
本研究は,クラウドベースのQCのフィンガープリントに本質的な量子ハードウェア特性を用いることが可能であることを示す。
本稿では,ユニークな指紋データとファジィ抽出を組み合わせたセキュアな鍵生成のための量子物理的拘束不能関数 (Q-PUF) スキームについて述べる。
論文 参考訳(メタデータ) (2023-11-13T05:47:33Z) - Hybrid quantum transfer learning for crack image classification on NISQ
hardware [62.997667081978825]
グレー値画像のひび割れ検出に量子転送学習を適用した。
我々は、PennyLaneの標準量子ビットのパフォーマンスとトレーニング時間を、IBMのqasm_simulatorや実際のバックエンドと比較する。
論文 参考訳(メタデータ) (2023-07-31T14:45:29Z) - Revocable Cryptography from Learning with Errors [61.470151825577034]
我々は、量子力学の非閉鎖原理に基づいて、キー呼び出し機能を備えた暗号スキームを設計する。
我々は、シークレットキーが量子状態として表現されるスキームを、シークレットキーが一度ユーザから取り消されたら、それらが以前と同じ機能を実行する能力を持たないことを保証して検討する。
論文 参考訳(メタデータ) (2023-02-28T18:58:11Z) - Delegated variational quantum algorithms based on quantum homomorphic
encryption [69.50567607858659]
変分量子アルゴリズム(VQA)は、量子デバイス上で量子アドバンテージを達成するための最も有望な候補の1つである。
クライアントのプライベートデータは、そのような量子クラウドモデルで量子サーバにリークされる可能性がある。
量子サーバが暗号化データを計算するための新しい量子ホモモルフィック暗号(QHE)スキームが構築されている。
論文 参考訳(メタデータ) (2023-01-25T07:00:13Z) - Simulation of Networked Quantum Computing on Encrypted Data [0.0]
暗号技術は、量子コンピューティングパワーの安全な遠隔利用のために開発されなければならない。
シミュレーションプラットフォームLIQ$Ui|rangle上で古典的にテストされた,そのようなプロトコルのシミュレーションを提案する。
論文 参考訳(メタデータ) (2022-12-25T20:02:53Z) - Learning Classical Readout Quantum PUFs based on single-qubit gates [9.669942356088377]
統計的クエリ(SQ)モデルを用いて古典的読み出し量子PUF(CR-QPUF)のクラスを定式化する。
敵がCR-QPUFにSQアクセスした場合、シングルビット回転ゲートに基づくCR-QPUFのセキュリティが不十分であることを示す。
悪意ある者がCR-QPUF特性を学習し、量子デバイスのシグネチャを鍛える方法を示す。
論文 参考訳(メタデータ) (2021-12-13T13:29:22Z) - Quantum Lock: A Provable Quantum Communication Advantage [2.9562795446317964]
本稿では,Hybrid lock PUFs(HLPUFs)と呼ばれる,セキュアなPUFの汎用設計を提案する。
HLPUFは古典的なPUFを使用し、出力を非直交量子状態にエンコードして、基盤となるCPUFの結果を敵から隠蔽する。
HLPUFは,量子状態の非古典的特性を活用することにより,サーバがチャレンジ応答ペアを再利用し,さらなるクライアント認証を可能にすることを示す。
論文 参考訳(メタデータ) (2021-10-18T17:01:46Z) - Backflash Light as a Security Vulnerability in Quantum Key Distribution
Systems [77.34726150561087]
量子鍵分布(QKD)システムのセキュリティ脆弱性について概説する。
我々は主に、盗聴攻撃の源となるバックフラッシュ光(backflash light)と呼ばれる特定の効果に焦点を当てる。
論文 参考訳(メタデータ) (2020-03-23T18:23:12Z) - Forging quantum data: classically defeating an IQP-based quantum test [0.0]
古典的)証明器が量子であることを検証者に納得させる古典的アルゴリズムについて述べる。
キー抽出アルゴリズムは,実際に数百量子ビットの問題を解くのに有効であることを示す。
論文 参考訳(メタデータ) (2019-12-11T19:00:00Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。