論文の概要: Efficient Self-Supervision using Patch-based Contrastive Learning for
Histopathology Image Segmentation
- arxiv url: http://arxiv.org/abs/2208.10779v1
- Date: Tue, 23 Aug 2022 07:24:47 GMT
- ステータス: 処理完了
- システム内更新日: 2022-08-24 12:43:47.732001
- Title: Efficient Self-Supervision using Patch-based Contrastive Learning for
Histopathology Image Segmentation
- Title(参考訳): 病理画像分割のためのパッチベースコントラスト学習を用いた効率的な自己スーパービジョン
- Authors: Nicklas Boserup, Raghavendra Selvan
- Abstract要約: 画像パッチに対するコントラスト学習を用いた自己教師型画像分割のためのフレームワークを提案する。
完全畳み込みニューラルネットワーク(FCNN)は、入力画像の特徴を識別するために、自己教師型で訓練される。
提案したモデルは10.8kパラメータを持つ単純なFCNNで構成され、高解像度の顕微鏡データセットに収束するのに約5分を要する。
- 参考スコア(独自算出の注目度): 0.456877715768796
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Learning discriminative representations of unlabelled data is a challenging
task. Contrastive self-supervised learning provides a framework to learn
meaningful representations using learned notions of similarity measures from
simple pretext tasks. In this work, we propose a simple and efficient framework
for self-supervised image segmentation using contrastive learning on image
patches, without using explicit pretext tasks or any further labeled
fine-tuning. A fully convolutional neural network (FCNN) is trained in a
self-supervised manner to discern features in the input images and obtain
confidence maps which capture the network's belief about the objects belonging
to the same class. Positive- and negative- patches are sampled based on the
average entropy in the confidence maps for contrastive learning. Convergence is
assumed when the information separation between the positive patches is small,
and the positive-negative pairs is large. We evaluate this method for the task
of segmenting nuclei from multiple histopathology datasets, and show comparable
performance with relevant self-supervised and supervised methods. The proposed
model only consists of a simple FCNN with 10.8k parameters and requires about 5
minutes to converge on the high resolution microscopy datasets, which is orders
of magnitude smaller than the relevant self-supervised methods to attain
similar performance.
- Abstract(参考訳): ラベルなしデータの識別表現の学習は難しい課題である。
コントラスト的自己教師型学習は、単純なプレテキストタスクから類似度尺度の学習概念を用いて意味のある表現を学習するフレームワークを提供する。
本研究では,画像パッチに対するコントラスト学習を用いて,明示的なプリテキストタスクやそれ以上のラベル付き微調整を使わずに,自己教師付き画像セグメンテーションの簡易かつ効率的なフレームワークを提案する。
完全な畳み込みニューラルネットワーク(FCNN)は、入力画像の特徴を識別し、同一クラスに属するオブジェクトに対するネットワークの信念を捉える信頼マップを得るために、自己教師型の方法で訓練される。
正と負のパッチは、対照学習のための信頼度マップの平均エントロピーに基づいてサンプリングされる。
正のパッチ間の情報分離が小さく、正の負のペアが大きい場合に収束を仮定する。
本手法は,複数の病理組織学的データセットから核を抽出するタスクに対して評価し,関連する自己監督的・監督的手法と同等の性能を示す。
提案されたモデルは、10.8kのパラメータを持つ単純なfcnnのみで構成され、同様の性能を達成するために関連する自己監視法よりも桁違いに小さい高分解能顕微鏡データセットに収束するのに約5分を要する。
関連論文リスト
- A Probabilistic Model Behind Self-Supervised Learning [53.64989127914936]
自己教師付き学習(SSL)では、アノテートラベルなしで補助的なタスクを通じて表現が学習される。
自己教師型学習のための生成潜在変数モデルを提案する。
対照的な方法を含む識別的SSLのいくつかのファミリーは、表現に匹敵する分布を誘導することを示した。
論文 参考訳(メタデータ) (2024-02-02T13:31:17Z) - Transformer-based Clipped Contrastive Quantization Learning for
Unsupervised Image Retrieval [15.982022297570108]
教師なし画像検索は、与えられたクエリ画像の類似画像を取得するために、任意のレベルなしに重要な視覚的特徴を学習することを目的としている。
本稿では,パッチベースの処理により局所的なコンテキストを持つTransformerを用いて,画像のグローバルコンテキストを符号化するTransClippedCLRモデルを提案する。
提案したクリップ付きコントラスト学習の結果は、バニラコントラスト学習と同一のバックボーンネットワークと比較して、すべてのデータセットで大幅に改善されている。
論文 参考訳(メタデータ) (2024-01-27T09:39:11Z) - ProbMCL: Simple Probabilistic Contrastive Learning for Multi-label Visual Classification [16.415582577355536]
マルチラベル画像分類は、コンピュータビジョンや医用画像など、多くの領域において難しい課題である。
最近の進歩は、グラフベースとトランスフォーマーベースのメソッドを導入し、パフォーマンスを改善し、ラベルの依存関係をキャプチャしている。
本稿では,これらの課題に対処する新しいフレームワークである確率的多ラベルコントラスト学習(ProbMCL)を提案する。
論文 参考訳(メタデータ) (2024-01-02T22:15:20Z) - MOCA: Self-supervised Representation Learning by Predicting Masked Online Codebook Assignments [72.6405488990753]
自己教師付き学習は、ビジョントランスフォーマーネットワークの欲求を軽減できる。
所望のプロパティを統一する単段および単段のMOCAを提案する。
我々は,様々な評価プロトコルにおいて,低照度設定と強力な実験結果に対して,最先端の新たな結果を得る。
論文 参考訳(メタデータ) (2023-07-18T15:46:20Z) - Multi-Task Self-Supervised Time-Series Representation Learning [3.31490164885582]
時系列表現学習は、時間的ダイナミクスとスパースラベルを持つデータから表現を抽出することができる。
自己教師型タスクの利点を組み合わせた時系列表現学習手法を提案する。
本稿では,時系列分類,予測,異常検出という3つのダウンストリームタスクの枠組みについて検討する。
論文 参考訳(メタデータ) (2023-03-02T07:44:06Z) - LEAD: Self-Supervised Landmark Estimation by Aligning Distributions of
Feature Similarity [49.84167231111667]
自己監督型ランドマーク検出における既存の研究は、画像から高密度(ピクセルレベルの)特徴表現を学習することに基づいている。
自己教師付き方式で高密度同変表現の学習を強化するアプローチを提案する。
機能抽出器にそのような先行性があることは,アノテーションの数が大幅に制限されている場合でも,ランドマーク検出に役立ちます。
論文 参考訳(メタデータ) (2022-04-06T17:48:18Z) - Mix-up Self-Supervised Learning for Contrast-agnostic Applications [33.807005669824136]
コントラストに依存しないアプリケーションのための,最初の混合型自己教師型学習フレームワークを提案する。
クロスドメイン・ミックスアップに基づく画像間の低分散に対処し、画像再構成と透明性予測に基づくプレテキストタスクを構築する。
論文 参考訳(メタデータ) (2022-04-02T16:58:36Z) - Group-Wise Semantic Mining for Weakly Supervised Semantic Segmentation [49.90178055521207]
この研究は、画像レベルのアノテーションとピクセルレベルのセグメンテーションのギャップを埋めることを目標に、弱い監督されたセマンティックセグメンテーション(WSSS)に対処する。
画像群における意味的依存関係を明示的にモデル化し,より信頼性の高い擬似的基盤構造を推定する,新たなグループ学習タスクとしてWSSSを定式化する。
特に、入力画像がグラフノードとして表現されるグループ単位のセマンティックマイニングのためのグラフニューラルネットワーク(GNN)を考案する。
論文 参考訳(メタデータ) (2020-12-09T12:40:13Z) - Dense Contrastive Learning for Self-Supervised Visual Pre-Training [102.15325936477362]
入力画像の2つのビュー間の画素レベルでの差分差分差分差分差分差分差分差分差分差分差分差分差分差分差分差分差分差分差分差分差分差分差分差分差分差分差分)を最適化することにより自己教師学習を実現する。
ベースライン法であるMoCo-v2と比較すると,計算オーバーヘッドは1%遅かった。
論文 参考訳(メタデータ) (2020-11-18T08:42:32Z) - Importance of Self-Consistency in Active Learning for Semantic
Segmentation [31.392212891018655]
我々は,少数のラベル付きデータにのみアクセス可能なデータ駆動モデルの性能を向上させるために,自己整合性は自己超越の強力な情報源となることを示す。
提案するアクティブラーニングフレームワークでは,ラベル付けが必要な小さな画像パッチを反復的に抽出する。
現在のモデルが最も分類に苦労しているイメージパッチを見つけることができます。
論文 参考訳(メタデータ) (2020-08-04T22:18:35Z) - Weakly-Supervised Semantic Segmentation by Iterative Affinity Learning [86.45526827323954]
弱教師付きセマンティックセグメンテーションは、トレーニングのためにピクセル単位のラベル情報が提供されないため、難しい課題である。
このようなペア関係を学習するための反復アルゴリズムを提案する。
本稿では,提案アルゴリズムが最先端手法に対して好適に動作することを示す。
論文 参考訳(メタデータ) (2020-02-19T10:32:03Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。