Transferability Ranking of Adversarial Examples
- URL: http://arxiv.org/abs/2208.10878v2
- Date: Thu, 18 Apr 2024 16:41:58 GMT
- Title: Transferability Ranking of Adversarial Examples
- Authors: Mosh Levy, Guy Amit, Yuval Elovici, Yisroel Mirsky,
- Abstract summary: This paper introduces a ranking strategy that refines the transfer attack process.
By leveraging a set of diverse surrogate models, our method can predict transferability of adversarial examples.
Using our strategy, we were able to raise the transferability of adversarial examples from a mere 20% - akin to random selection-up to near upper-bound levels.
- Score: 20.41013432717447
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Adversarial transferability in black-box scenarios presents a unique challenge: while attackers can employ surrogate models to craft adversarial examples, they lack assurance on whether these examples will successfully compromise the target model. Until now, the prevalent method to ascertain success has been trial and error-testing crafted samples directly on the victim model. This approach, however, risks detection with every attempt, forcing attackers to either perfect their first try or face exposure. Our paper introduces a ranking strategy that refines the transfer attack process, enabling the attacker to estimate the likelihood of success without repeated trials on the victim's system. By leveraging a set of diverse surrogate models, our method can predict transferability of adversarial examples. This strategy can be used to either select the best sample to use in an attack or the best perturbation to apply to a specific sample. Using our strategy, we were able to raise the transferability of adversarial examples from a mere 20% - akin to random selection-up to near upper-bound levels, with some scenarios even witnessing a 100% success rate. This substantial improvement not only sheds light on the shared susceptibilities across diverse architectures but also demonstrates that attackers can forego the detectable trial-and-error tactics raising increasing the threat of surrogate-based attacks.
Related papers
- PEAS: A Strategy for Crafting Transferable Adversarial Examples [2.9815109163161204]
Black box attacks pose a significant threat to machine learning systems.
Adversarial examples generated with a substitute model often suffer from limited transferability to the target model.
We propose a novel strategy called PEAS that can boost the transferability of existing black box attacks.
arXiv Detail & Related papers (2024-10-20T14:55:08Z) - A Generative Approach to Surrogate-based Black-box Attacks [18.37537526008645]
State-of-the-art surrogate-based attacks involve training a discriminative surrogate that mimics the target's outputs.
We propose a generative surrogate that learns the distribution of samples residing on or close to the target's decision boundaries.
The proposed generative approach results in attacks with remarkably high attack success rates on various targets and datasets.
arXiv Detail & Related papers (2024-02-05T05:22:58Z) - Confidence-driven Sampling for Backdoor Attacks [49.72680157684523]
Backdoor attacks aim to surreptitiously insert malicious triggers into DNN models, granting unauthorized control during testing scenarios.
Existing methods lack robustness against defense strategies and predominantly focus on enhancing trigger stealthiness while randomly selecting poisoned samples.
We introduce a straightforward yet highly effective sampling methodology that leverages confidence scores. Specifically, it selects samples with lower confidence scores, significantly increasing the challenge for defenders in identifying and countering these attacks.
arXiv Detail & Related papers (2023-10-08T18:57:36Z) - Generalizable Black-Box Adversarial Attack with Meta Learning [54.196613395045595]
In black-box adversarial attack, the target model's parameters are unknown, and the attacker aims to find a successful perturbation based on query feedback under a query budget.
We propose to utilize the feedback information across historical attacks, dubbed example-level adversarial transferability.
The proposed framework with the two types of adversarial transferability can be naturally combined with any off-the-shelf query-based attack methods to boost their performance.
arXiv Detail & Related papers (2023-01-01T07:24:12Z) - Resisting Deep Learning Models Against Adversarial Attack
Transferability via Feature Randomization [17.756085566366167]
We propose a feature randomization-based approach that resists eight adversarial attacks targeting deep learning models.
Our methodology can secure the target network and resists adversarial attack transferability by over 60%.
arXiv Detail & Related papers (2022-09-11T20:14:12Z) - Adversarial Robustness of Deep Reinforcement Learning based Dynamic
Recommender Systems [50.758281304737444]
We propose to explore adversarial examples and attack detection on reinforcement learning-based interactive recommendation systems.
We first craft different types of adversarial examples by adding perturbations to the input and intervening on the casual factors.
Then, we augment recommendation systems by detecting potential attacks with a deep learning-based classifier based on the crafted data.
arXiv Detail & Related papers (2021-12-02T04:12:24Z) - Boosting Transferability of Targeted Adversarial Examples via
Hierarchical Generative Networks [56.96241557830253]
Transfer-based adversarial attacks can effectively evaluate model robustness in the black-box setting.
We propose a conditional generative attacking model, which can generate the adversarial examples targeted at different classes.
Our method improves the success rates of targeted black-box attacks by a significant margin over the existing methods.
arXiv Detail & Related papers (2021-07-05T06:17:47Z) - Direction-Aggregated Attack for Transferable Adversarial Examples [10.208465711975242]
A deep neural network is vulnerable to adversarial examples crafted by imposing imperceptible changes to the inputs.
adversarial examples are most successful in white-box settings where the model and its parameters are available.
We propose the Direction-Aggregated adversarial attacks that deliver transferable adversarial examples.
arXiv Detail & Related papers (2021-04-19T09:54:56Z) - Are Adversarial Examples Created Equal? A Learnable Weighted Minimax
Risk for Robustness under Non-uniform Attacks [70.11599738647963]
Adversarial Training is one of the few defenses that withstand strong attacks.
Traditional defense mechanisms assume a uniform attack over the examples according to the underlying data distribution.
We present a weighted minimax risk optimization that defends against non-uniform attacks.
arXiv Detail & Related papers (2020-10-24T21:20:35Z) - Adversarial Example Games [51.92698856933169]
Adrial Example Games (AEG) is a framework that models the crafting of adversarial examples.
AEG provides a new way to design adversarial examples by adversarially training a generator and aversa from a given hypothesis class.
We demonstrate the efficacy of AEG on the MNIST and CIFAR-10 datasets.
arXiv Detail & Related papers (2020-07-01T19:47:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.