PEAS: A Strategy for Crafting Transferable Adversarial Examples
- URL: http://arxiv.org/abs/2410.15409v1
- Date: Sun, 20 Oct 2024 14:55:08 GMT
- Title: PEAS: A Strategy for Crafting Transferable Adversarial Examples
- Authors: Bar Avraham, Yisroel Mirsky,
- Abstract summary: Black box attacks pose a significant threat to machine learning systems.
Adversarial examples generated with a substitute model often suffer from limited transferability to the target model.
We propose a novel strategy called PEAS that can boost the transferability of existing black box attacks.
- Score: 2.9815109163161204
- License:
- Abstract: Black box attacks, where adversaries have limited knowledge of the target model, pose a significant threat to machine learning systems. Adversarial examples generated with a substitute model often suffer from limited transferability to the target model. While recent work explores ranking perturbations for improved success rates, these methods see only modest gains. We propose a novel strategy called PEAS that can boost the transferability of existing black box attacks. PEAS leverages the insight that samples which are perceptually equivalent exhibit significant variability in their adversarial transferability. Our approach first generates a set of images from an initial sample via subtle augmentations. We then evaluate the transferability of adversarial perturbations on these images using a set of substitute models. Finally, the most transferable adversarial example is selected and used for the attack. Our experiments show that PEAS can double the performance of existing attacks, achieving a 2.5x improvement in attack success rates on average over current ranking methods. We thoroughly evaluate PEAS on ImageNet and CIFAR-10, analyze hyperparameter impacts, and provide an ablation study to isolate each component's importance.
Related papers
- SA-Attack: Improving Adversarial Transferability of Vision-Language
Pre-training Models via Self-Augmentation [56.622250514119294]
In contrast to white-box adversarial attacks, transfer attacks are more reflective of real-world scenarios.
We propose a self-augment-based transfer attack method, termed SA-Attack.
arXiv Detail & Related papers (2023-12-08T09:08:50Z) - Enhancing Adversarial Attacks: The Similar Target Method [6.293148047652131]
adversarial examples pose a threat to deep neural networks' applications.
Deep neural networks are vulnerable to adversarial examples, posing a threat to the models' applications and raising security concerns.
We propose a similar targeted attack method named Similar Target(ST)
arXiv Detail & Related papers (2023-08-21T14:16:36Z) - Rethinking Model Ensemble in Transfer-based Adversarial Attacks [46.82830479910875]
An effective strategy to improve the transferability is attacking an ensemble of models.
Previous works simply average the outputs of different models.
We propose a Common Weakness Attack (CWA) to generate more transferable adversarial examples.
arXiv Detail & Related papers (2023-03-16T06:37:16Z) - Transferability Ranking of Adversarial Examples [20.41013432717447]
This paper introduces a ranking strategy that refines the transfer attack process.
By leveraging a set of diverse surrogate models, our method can predict transferability of adversarial examples.
Using our strategy, we were able to raise the transferability of adversarial examples from a mere 20% - akin to random selection-up to near upper-bound levels.
arXiv Detail & Related papers (2022-08-23T11:25:16Z) - Learning to Learn Transferable Attack [77.67399621530052]
Transfer adversarial attack is a non-trivial black-box adversarial attack that aims to craft adversarial perturbations on the surrogate model and then apply such perturbations to the victim model.
We propose a Learning to Learn Transferable Attack (LLTA) method, which makes the adversarial perturbations more generalized via learning from both data and model augmentation.
Empirical results on the widely-used dataset demonstrate the effectiveness of our attack method with a 12.85% higher success rate of transfer attack compared with the state-of-the-art methods.
arXiv Detail & Related papers (2021-12-10T07:24:21Z) - Adversarial Robustness of Deep Reinforcement Learning based Dynamic
Recommender Systems [50.758281304737444]
We propose to explore adversarial examples and attack detection on reinforcement learning-based interactive recommendation systems.
We first craft different types of adversarial examples by adding perturbations to the input and intervening on the casual factors.
Then, we augment recommendation systems by detecting potential attacks with a deep learning-based classifier based on the crafted data.
arXiv Detail & Related papers (2021-12-02T04:12:24Z) - Boosting Transferability of Targeted Adversarial Examples via
Hierarchical Generative Networks [56.96241557830253]
Transfer-based adversarial attacks can effectively evaluate model robustness in the black-box setting.
We propose a conditional generative attacking model, which can generate the adversarial examples targeted at different classes.
Our method improves the success rates of targeted black-box attacks by a significant margin over the existing methods.
arXiv Detail & Related papers (2021-07-05T06:17:47Z) - AdvHaze: Adversarial Haze Attack [19.744435173861785]
We introduce a novel adversarial attack method based on haze, which is a common phenomenon in real-world scenery.
Our method can synthesize potentially adversarial haze into an image based on the atmospheric scattering model with high realisticity.
We demonstrate that the proposed method achieves a high success rate, and holds better transferability across different classification models than the baselines.
arXiv Detail & Related papers (2021-04-28T09:52:25Z) - Two Sides of the Same Coin: White-box and Black-box Attacks for Transfer
Learning [60.784641458579124]
We show that fine-tuning effectively enhances model robustness under white-box FGSM attacks.
We also propose a black-box attack method for transfer learning models which attacks the target model with the adversarial examples produced by its source model.
To systematically measure the effect of both white-box and black-box attacks, we propose a new metric to evaluate how transferable are the adversarial examples produced by a source model to a target model.
arXiv Detail & Related papers (2020-08-25T15:04:32Z) - Adversarial Example Games [51.92698856933169]
Adrial Example Games (AEG) is a framework that models the crafting of adversarial examples.
AEG provides a new way to design adversarial examples by adversarially training a generator and aversa from a given hypothesis class.
We demonstrate the efficacy of AEG on the MNIST and CIFAR-10 datasets.
arXiv Detail & Related papers (2020-07-01T19:47:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.