A flexible empirical Bayes approach to multiple linear regression and connections with penalized regression
- URL: http://arxiv.org/abs/2208.10910v3
- Date: Wed, 12 Jun 2024 17:54:56 GMT
- Title: A flexible empirical Bayes approach to multiple linear regression and connections with penalized regression
- Authors: Youngseok Kim, Wei Wang, Peter Carbonetto, Matthew Stephens,
- Abstract summary: We introduce a new empirical Bayes approach for large-scale multiple linear regression.
Our approach combines two key ideas: the use of flexible "adaptive shrinkage" priors and variational approximations.
We show that the posterior mean from our method solves a penalized regression problem.
- Score: 8.663322701649454
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We introduce a new empirical Bayes approach for large-scale multiple linear regression. Our approach combines two key ideas: (i) the use of flexible "adaptive shrinkage" priors, which approximate the nonparametric family of scale mixture of normal distributions by a finite mixture of normal distributions; and (ii) the use of variational approximations to efficiently estimate prior hyperparameters and compute approximate posteriors. Combining these two ideas results in fast and flexible methods, with computational speed comparable to fast penalized regression methods such as the Lasso, and with competitive prediction accuracy across a wide range of scenarios. Further, we provide new results that establish conceptual connections between our empirical Bayes methods and penalized methods. Specifically, we show that the posterior mean from our method solves a penalized regression problem, with the form of the penalty function being learned from the data by directly solving an optimization problem (rather than being tuned by cross-validation). Our methods are implemented in an R package, mr.ash.alpha, available from https://github.com/stephenslab/mr.ash.alpha.
Related papers
- Distributed High-Dimensional Quantile Regression: Estimation Efficiency and Support Recovery [0.0]
We focus on distributed estimation and support recovery for high-dimensional linear quantile regression.
We transform the original quantile regression into the least-squares optimization.
An efficient algorithm is developed, which enjoys high computation and communication efficiency.
arXiv Detail & Related papers (2024-05-13T08:32:22Z) - Regression-aware Inference with LLMs [52.764328080398805]
We show that an inference strategy can be sub-optimal for common regression and scoring evaluation metrics.
We propose alternate inference strategies that estimate the Bayes-optimal solution for regression and scoring metrics in closed-form from sampled responses.
arXiv Detail & Related papers (2024-03-07T03:24:34Z) - Improving Diffusion Models for Inverse Problems Using Optimal Posterior Covariance [52.093434664236014]
Recent diffusion models provide a promising zero-shot solution to noisy linear inverse problems without retraining for specific inverse problems.
Inspired by this finding, we propose to improve recent methods by using more principled covariance determined by maximum likelihood estimation.
arXiv Detail & Related papers (2024-02-03T13:35:39Z) - Distributional Reinforcement Learning with Dual Expectile-Quantile Regression [51.87411935256015]
quantile regression approach to distributional RL provides flexible and effective way of learning arbitrary return distributions.
We show that distributional guarantees vanish, and we empirically observe that the estimated distribution rapidly collapses to its mean estimation.
Motivated by the efficiency of $L$-based learning, we propose to jointly learn expectiles and quantiles of the return distribution in a way that allows efficient learning while keeping an estimate of the full distribution of returns.
arXiv Detail & Related papers (2023-05-26T12:30:05Z) - Refining Amortized Posterior Approximations using Gradient-Based Summary
Statistics [0.9176056742068814]
We present an iterative framework to improve the amortized approximations of posterior distributions in the context of inverse problems.
We validate our method in a controlled setting by applying it to a stylized problem, and observe improved posterior approximations with each iteration.
arXiv Detail & Related papers (2023-05-15T15:47:19Z) - Variational Laplace Autoencoders [53.08170674326728]
Variational autoencoders employ an amortized inference model to approximate the posterior of latent variables.
We present a novel approach that addresses the limited posterior expressiveness of fully-factorized Gaussian assumption.
We also present a general framework named Variational Laplace Autoencoders (VLAEs) for training deep generative models.
arXiv Detail & Related papers (2022-11-30T18:59:27Z) - Sparse high-dimensional linear regression with a partitioned empirical
Bayes ECM algorithm [62.997667081978825]
We propose a computationally efficient and powerful Bayesian approach for sparse high-dimensional linear regression.
Minimal prior assumptions on the parameters are used through the use of plug-in empirical Bayes estimates.
The proposed approach is implemented in the R package probe.
arXiv Detail & Related papers (2022-09-16T19:15:50Z) - Variational Inference for Bayesian Bridge Regression [0.0]
We study the implementation of Automatic Differentiation Variational inference (ADVI) for Bayesian inference on regression models with bridge penalization.
The bridge approach uses $ell_alpha$ norm, with $alpha in (0, +infty)$ to define a penalization on large values of the regression coefficients.
We illustrate the approach on non-parametric regression models with B-splines, although the method works seamlessly for other choices of basis functions.
arXiv Detail & Related papers (2022-05-19T12:29:09Z) - Human Pose Regression with Residual Log-likelihood Estimation [48.30425850653223]
We propose a novel regression paradigm with Residual Log-likelihood Estimation (RLE) to capture the underlying output distribution.
RLE learns the change of the distribution instead of the unreferenced underlying distribution to facilitate the training process.
Compared to the conventional regression paradigm, regression with RLE bring 12.4 mAP improvement on MSCOCO without any test-time overhead.
arXiv Detail & Related papers (2021-07-23T15:06:31Z) - The Reciprocal Bayesian LASSO [0.0]
We consider a fully Bayesian formulation of the rLASSO problem, which is based on the observation that the rLASSO estimate for linear regression parameters can be interpreted as a Bayesian posterior mode estimate.
On simulated and real datasets, we show that the Bayesian formulation outperforms its classical cousin in estimation, prediction, and variable selection.
arXiv Detail & Related papers (2020-01-23T01:21:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.