Refining Amortized Posterior Approximations using Gradient-Based Summary
Statistics
- URL: http://arxiv.org/abs/2305.08733v1
- Date: Mon, 15 May 2023 15:47:19 GMT
- Title: Refining Amortized Posterior Approximations using Gradient-Based Summary
Statistics
- Authors: Rafael Orozco, Ali Siahkoohi, Mathias Louboutin, Felix J. Herrmann
- Abstract summary: We present an iterative framework to improve the amortized approximations of posterior distributions in the context of inverse problems.
We validate our method in a controlled setting by applying it to a stylized problem, and observe improved posterior approximations with each iteration.
- Score: 0.9176056742068814
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We present an iterative framework to improve the amortized approximations of
posterior distributions in the context of Bayesian inverse problems, which is
inspired by loop-unrolled gradient descent methods and is theoretically
grounded in maximally informative summary statistics. Amortized variational
inference is restricted by the expressive power of the chosen variational
distribution and the availability of training data in the form of joint data
and parameter samples, which often lead to approximation errors such as the
amortization gap. To address this issue, we propose an iterative framework that
refines the current amortized posterior approximation at each step. Our
approach involves alternating between two steps: (1) constructing a training
dataset consisting of pairs of summarized data residuals and parameters, where
the summarized data residual is generated using a gradient-based summary
statistic, and (2) training a conditional generative model -- a normalizing
flow in our examples -- on this dataset to obtain a probabilistic update of the
unknown parameter. This procedure leads to iterative refinement of the
amortized posterior approximations without the need for extra training data. We
validate our method in a controlled setting by applying it to a stylized
problem, and observe improved posterior approximations with each iteration.
Additionally, we showcase the capability of our method in tackling
realistically sized problems by applying it to transcranial ultrasound, a
high-dimensional, nonlinear inverse problem governed by wave physics, and
observe enhanced posterior quality through better image reconstruction with the
posterior mean.
Related papers
- Progression: an extrapolation principle for regression [0.0]
We propose a novel statistical extrapolation principle.
It assumes a simple relationship between predictors and the response at the boundary of the training predictor samples.
Our semi-parametric method, progression, leverages this extrapolation principle and offers guarantees on the approximation error beyond the training data range.
arXiv Detail & Related papers (2024-10-30T17:29:51Z) - Diffusion Prior-Based Amortized Variational Inference for Noisy Inverse Problems [12.482127049881026]
We propose a novel approach to solve inverse problems with a diffusion prior from an amortized variational inference perspective.
Our amortized inference learns a function that directly maps measurements to the implicit posterior distributions of corresponding clean data, enabling a single-step posterior sampling even for unseen measurements.
arXiv Detail & Related papers (2024-07-23T02:14:18Z) - Improving Diffusion Models for Inverse Problems Using Optimal Posterior Covariance [52.093434664236014]
Recent diffusion models provide a promising zero-shot solution to noisy linear inverse problems without retraining for specific inverse problems.
Inspired by this finding, we propose to improve recent methods by using more principled covariance determined by maximum likelihood estimation.
arXiv Detail & Related papers (2024-02-03T13:35:39Z) - Restoration-Degradation Beyond Linear Diffusions: A Non-Asymptotic
Analysis For DDIM-Type Samplers [90.45898746733397]
We develop a framework for non-asymptotic analysis of deterministic samplers used for diffusion generative modeling.
We show that one step along the probability flow ODE can be expressed as two steps: 1) a restoration step that runs ascent on the conditional log-likelihood at some infinitesimally previous time, and 2) a degradation step that runs the forward process using noise pointing back towards the current gradient.
arXiv Detail & Related papers (2023-03-06T18:59:19Z) - Variational Laplace Autoencoders [53.08170674326728]
Variational autoencoders employ an amortized inference model to approximate the posterior of latent variables.
We present a novel approach that addresses the limited posterior expressiveness of fully-factorized Gaussian assumption.
We also present a general framework named Variational Laplace Autoencoders (VLAEs) for training deep generative models.
arXiv Detail & Related papers (2022-11-30T18:59:27Z) - Shuffled linear regression through graduated convex relaxation [12.614901374282868]
The shuffled linear regression problem aims to recover linear relationships in datasets where the correspondence between input and output is unknown.
This problem arises in a wide range of applications including survey data.
We propose a novel optimization algorithm for shuffled linear regression based on a posterior-maximizing objective function.
arXiv Detail & Related papers (2022-09-30T17:33:48Z) - Density Estimation with Autoregressive Bayesian Predictives [1.5771347525430772]
In the context of density estimation, the standard Bayesian approach is to target the posterior predictive.
We develop a novel parameterization of the bandwidth using an autoregressive neural network that maps the data into a latent space.
arXiv Detail & Related papers (2022-06-13T20:43:39Z) - MINIMALIST: Mutual INformatIon Maximization for Amortized Likelihood
Inference from Sampled Trajectories [61.3299263929289]
Simulation-based inference enables learning the parameters of a model even when its likelihood cannot be computed in practice.
One class of methods uses data simulated with different parameters to infer an amortized estimator for the likelihood-to-evidence ratio.
We show that this approach can be formulated in terms of mutual information between model parameters and simulated data.
arXiv Detail & Related papers (2021-06-03T12:59:16Z) - Slice Sampling for General Completely Random Measures [74.24975039689893]
We present a novel Markov chain Monte Carlo algorithm for posterior inference that adaptively sets the truncation level using auxiliary slice variables.
The efficacy of the proposed algorithm is evaluated on several popular nonparametric models.
arXiv Detail & Related papers (2020-06-24T17:53:53Z) - Path Sample-Analytic Gradient Estimators for Stochastic Binary Networks [78.76880041670904]
In neural networks with binary activations and or binary weights the training by gradient descent is complicated.
We propose a new method for this estimation problem combining sampling and analytic approximation steps.
We experimentally show higher accuracy in gradient estimation and demonstrate a more stable and better performing training in deep convolutional models.
arXiv Detail & Related papers (2020-06-04T21:51:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.