論文の概要: A Study on the Impact of Data Augmentation for Training Convolutional
Neural Networks in the Presence of Noisy Labels
- arxiv url: http://arxiv.org/abs/2208.11176v1
- Date: Tue, 23 Aug 2022 20:04:17 GMT
- ステータス: 処理完了
- システム内更新日: 2022-08-25 12:42:29.871957
- Title: A Study on the Impact of Data Augmentation for Training Convolutional
Neural Networks in the Presence of Noisy Labels
- Title(参考訳): 雑音ラベル存在下での畳み込みニューラルネットワークトレーニングにおけるデータ拡張の影響に関する研究
- Authors: Emeson Santana, Gustavo Carneiro, Filipe R. Cordeiro
- Abstract要約: ラベルノイズは大規模な実世界のデータセットで一般的であり、その存在はディープニューラルネットワークのトレーニングプロセスに悪影響を及ぼす。
我々は、深層ニューラルネットワークをトレーニングするための設計選択として、データ拡張の影響を評価する。
データ拡張の適切な選択は、ラベルノイズに対するモデルロバスト性を大幅に改善できることを示す。
- 参考スコア(独自算出の注目度): 14.998309259808236
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Label noise is common in large real-world datasets, and its presence harms
the training process of deep neural networks. Although several works have
focused on the training strategies to address this problem, there are few
studies that evaluate the impact of data augmentation as a design choice for
training deep neural networks. In this work, we analyse the model robustness
when using different data augmentations and their improvement on the training
with the presence of noisy labels. We evaluate state-of-the-art and classical
data augmentation strategies with different levels of synthetic noise for the
datasets MNist, CIFAR-10, CIFAR-100, and the real-world dataset Clothing1M. We
evaluate the methods using the accuracy metric. Results show that the
appropriate selection of data augmentation can drastically improve the model
robustness to label noise, increasing up to 177.84% of relative best test
accuracy compared to the baseline with no augmentation, and an increase of up
to 6% in absolute value with the state-of-the-art DivideMix training strategy.
- Abstract(参考訳): ラベルノイズは大規模な実世界のデータセットで一般的であり、その存在はディープニューラルネットワークのトレーニングプロセスに悪影響を及ぼす。
この問題に対処するためのトレーニング戦略に焦点を当てた研究はいくつかあるが、深層ニューラルネットワークをトレーニングするための設計選択としてのデータの強化の影響を評価する研究は少ない。
本研究では,異なるデータ拡張を用いたモデルのロバスト性と,ノイズラベルの存在下でのトレーニング改善について分析する。
mnist, cifar-10, cifar-100, and the real-world dataset clothing1mの合成ノイズレベルが異なる,最先端および古典的データ拡張戦略を評価する。
本手法を精度指標を用いて評価する。
その結果、データ拡張の適切な選択は、ラベルノイズに対するモデルロバスト性を大幅に向上させ、拡張のないベースラインと比較して177.84%の相対的テスト精度を向上し、最先端のDivideMixトレーニング戦略により6%の絶対値が向上することを示した。
関連論文リスト
- Learning with Noisy Foundation Models [95.50968225050012]
本論文は、事前学習データセットにおけるノイズの性質を包括的に理解し分析する最初の研究である。
雑音の悪影響を緩和し、一般化を改善するため、特徴空間に適応するチューニング法(NMTune)を提案する。
論文 参考訳(メタデータ) (2024-03-11T16:22:41Z) - Analyze the Robustness of Classifiers under Label Noise [5.708964539699851]
教師付き学習におけるラベルノイズは、誤ったラベルまたは不正確なラベルによって特徴づけられ、モデル性能を著しく損なう。
本研究は, ラベルノイズが実用的応用に与える影響について, ますます関連する問題に焦点をあてる。
論文 参考訳(メタデータ) (2023-12-12T13:51:25Z) - Noisy Self-Training with Synthetic Queries for Dense Retrieval [49.49928764695172]
合成クエリと組み合わせた,ノイズの多い自己学習フレームワークを提案する。
実験結果から,本手法は既存手法よりも一貫した改善が得られた。
我々の手法はデータ効率が良く、競争のベースラインより優れています。
論文 参考訳(メタデータ) (2023-11-27T06:19:50Z) - Spanning Training Progress: Temporal Dual-Depth Scoring (TDDS) for Enhanced Dataset Pruning [50.809769498312434]
我々は、時間的デュアルディープス・スコーリング(TDDS)と呼ばれる新しいデータセット・プルーニング手法を提案する。
本手法は,10%のトレーニングデータで54.51%の精度を達成し,ランダム選択を7.83%以上,他の比較手法を12.69%以上上回る結果を得た。
論文 参考訳(メタデータ) (2023-11-22T03:45:30Z) - Understanding and Mitigating the Label Noise in Pre-training on
Downstream Tasks [91.15120211190519]
本稿では、事前学習データセットにおけるノイズの性質を理解し、下流タスクへの影響を軽減することを目的とする。
雑音の悪影響を軽減するために特徴空間に適応する軽量ブラックボックスチューニング法(NMTune)を提案する。
論文 参考訳(メタデータ) (2023-09-29T06:18:15Z) - Dynamic Loss For Robust Learning [17.33444812274523]
本研究は,メタラーニングに基づく動的損失を学習プロセスで自動調整し,長い尾の雑音データから分類器を頑健に学習する手法を提案する。
本研究では,CIFAR-10/100,Animal-10N,ImageNet-LT,Webvisionなど,さまざまな種類のデータバイアスを持つ複数の実世界および合成データセットに対して,最先端の精度を実現する。
論文 参考訳(メタデータ) (2022-11-22T01:48:25Z) - Boosting Facial Expression Recognition by A Semi-Supervised Progressive
Teacher [54.50747989860957]
本稿では,信頼度の高いFERデータセットと大規模未ラベル表現画像を有効訓練に用いるための半教師付き学習アルゴリズム,Progressive Teacher (PT)を提案する。
RAF-DB と FERPlus を用いた実験により,RAF-DB で89.57% の精度で最先端の性能を実現する手法の有効性が検証された。
論文 参考訳(メタデータ) (2022-05-28T07:47:53Z) - Synergistic Network Learning and Label Correction for Noise-robust Image
Classification [28.27739181560233]
ディープニューラルネットワーク(DNN)は、トレーニングラベルノイズに過度に適合する傾向があるため、実際のモデルパフォーマンスは低下する。
損失選択と雑音補正のアイデアを組み合わせたロバストなラベル補正フレームワークを提案する。
ノイズタイプやレートの異なる合成および実世界のデータセット上で,本手法を実証する。
論文 参考訳(メタデータ) (2022-02-27T23:06:31Z) - Augmentation Strategies for Learning with Noisy Labels [3.698228929379249]
ノイズラベル付き学習」問題に取り組むアルゴリズムについて,様々な拡張戦略を評価した。
ロスモデリングタスクと学習のための別のセットに拡張の1つのセットを使用することが最も効果的であることがわかります。
我々は,この拡張戦略を最先端技術に導入し,評価されたすべての騒音レベルにおける性能向上を実証する。
論文 参考訳(メタデータ) (2021-03-03T02:19:35Z) - Dataset Condensation with Differentiable Siamese Augmentation [30.571335208276246]
大規模トレーニングセットを,ディープニューラルネットワークのトレーニングに使用可能な,はるかに小さな合成セットに集約することに注力する。
より有益な合成画像の合成にデータ拡張を有効活用できる微分可能なSiamese Augmentationを提案する。
本手法がMNIST, FashionMNIST, SVHN, CIFAR10に対して99.6%, 94.9%, 88.5%, 71.5%の相対的性能をそれぞれ達成していることを1%未満のデータで示した。
論文 参考訳(メタデータ) (2021-02-16T16:32:21Z) - Omni-supervised Facial Expression Recognition via Distilled Data [120.11782405714234]
ネットワークトレーニングにおいて,信頼度の高いサンプルを多量のラベルのないデータで活用するためのオムニ教師付き学習を提案する。
我々は,新しいデータセットが学習したFERモデルの能力を大幅に向上させることができることを実験的に検証した。
そこで本研究では,生成したデータセットを複数のクラスワイド画像に圧縮するために,データセット蒸留戦略を適用することを提案する。
論文 参考訳(メタデータ) (2020-05-18T09:36:51Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。