論文の概要: MuMUR : Multilingual Multimodal Universal Retrieval
- arxiv url: http://arxiv.org/abs/2208.11553v6
- Date: Mon, 18 Sep 2023 15:33:41 GMT
- ステータス: 処理完了
- システム内更新日: 2023-09-20 01:43:40.232593
- Title: MuMUR : Multilingual Multimodal Universal Retrieval
- Title(参考訳): MuMUR : 多言語マルチモーダルユニバーサル検索
- Authors: Avinash Madasu, Estelle Aflalo, Gabriela Ben Melech Stan, Shachar
Rosenman, Shao-Yen Tseng, Gedas Bertasius, Vasudev Lal
- Abstract要約: マルチ言語モデルからの知識伝達を利用して,マルチモーダル(画像とビデオ)検索の性能を向上させるフレームワーク MuMUR を提案する。
まず、最先端の機械翻訳モデルを用いて、擬似基底構造多言語視覚テキストペアを構築する。
次に、このデータを用いて、英語と非英語のテキストクエリが共通の埋め込み空間で表現される共同視覚テキスト表現を学習する。
- 参考スコア(独自算出の注目度): 19.242056928318913
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Multi-modal retrieval has seen tremendous progress with the development of
vision-language models. However, further improving these models require
additional labelled data which is a huge manual effort. In this paper, we
propose a framework MuMUR, that utilizes knowledge transfer from a multilingual
model to boost the performance of multi-modal (image and video) retrieval. We
first use state-of-the-art machine translation models to construct pseudo
ground-truth multilingual visual-text pairs. We then use this data to learn a
joint vision-text representation where English and non-English text queries are
represented in a common embedding space based on pretrained multilingual
models. We evaluate our proposed approach on a diverse set of retrieval
datasets: five video retrieval datasets such as MSRVTT, MSVD, DiDeMo, Charades
and MSRVTT multilingual, two image retrieval datasets such as Flickr30k and
Multi30k . Experimental results demonstrate that our approach achieves
state-of-the-art results on all video retrieval datasets outperforming previous
models. Additionally, our framework MuMUR significantly beats other
multilingual video retrieval dataset. We also observe that MuMUR exhibits
strong performance on image retrieval. This demonstrates the universal ability
of MuMUR to perform retrieval across all visual inputs (image and video) and
text inputs (monolingual and multilingual).
- Abstract(参考訳): マルチモーダル検索は視覚言語モデルの開発で大きな進歩を遂げている。
しかし、これらのモデルをさらに改善するには、追加のラベル付きデータが必要である。
本稿では,多言語モデルからの知識伝達を利用して,マルチモーダル(画像とビデオ)検索の性能を向上させるフレームワーク MuMUR を提案する。
まず、最先端の機械翻訳モデルを用いて、疑似接地真実の多言語視覚テキスト対を構築する。
次に、このデータを用いて、事前学習された多言語モデルに基づいて、英語と非英語のテキストクエリが共通の埋め込み空間で表現される共同視覚テキスト表現を学習する。
提案手法は,MSRVTT,MSVD,DiDeMo,Charades,MSRVTTの5つのビデオ検索データセット,Flickr30kとMulti30kの2つの画像検索データセットである。
実験により,従来のモデルよりも優れた映像検索データセットについて,最新の結果が得られた。
さらに,我々のフレームワークであるMuMURは,他の多言語ビデオ検索データセットを大きく上回っている。
また, MuMUR が画像検索に強い性能を示すことも確認した。
このことは、MuMURがすべての視覚入力(画像とビデオ)とテキスト入力(単言語と多言語)で検索を行う普遍的な能力を示している。
関連論文リスト
- TRINS: Towards Multimodal Language Models that Can Read [61.17806538631744]
TRINSはText-RichイメージINStructionデータセットである。
39,153の画像、キャプション、102,437の質問が含まれている。
本稿では,画像中のテキスト内容の理解に長けたLanguage-vision Reading Assistant(LaRA)を提案する。
論文 参考訳(メタデータ) (2024-06-10T18:52:37Z) - Reformulating Vision-Language Foundation Models and Datasets Towards
Universal Multimodal Assistants [65.47222691674074]
Muffinフレームワークは、事前訓練された視覚言語モデルを使用して視覚信号のプロバイダとして機能する。
UniMM-Chatデータセットはデータセットの相補性を探求し、高品質で多様なマルチモーダル命令を生成する。
論文 参考訳(メタデータ) (2023-10-01T12:35:18Z) - TextBind: Multi-turn Interleaved Multimodal Instruction-following in the Wild [102.93338424976959]
マルチターンインターリーブ型インストラクションフォロー機能を備えた,より大規模な言語モデルを実現するための,ほとんどアノテーションのないフレームワークであるTextBindを紹介する。
提案手法では,画像キャプチャペアのみが必要であり,言語モデルからマルチターンマルチモーダル・インストラクション・レスポンス・会話を生成する。
そこで我々は,画像エンコーダとデコーダモデルをシームレスに統合する言語モデル中心アーキテクチャであるMIMを考案した。
論文 参考訳(メタデータ) (2023-09-14T15:34:01Z) - Large Multilingual Models Pivot Zero-Shot Multimodal Learning across Languages [76.35234803589412]
MPMは、英語以外の言語で大規模なマルチモーダルモデルを訓練するための効果的な訓練パラダイムである。
画像・テキスト・テキスト・画像生成における大規模なマルチモーダルモデルVisCPMを構築し,中国語の最先端(オープンソース)性能を実現する。
論文 参考訳(メタデータ) (2023-08-23T09:55:41Z) - Multilingual Multimodal Learning with Machine Translated Text [27.7207234512674]
英語のマルチモーダルデータの機械翻訳が、容易に利用できる多言語データの欠如を抑えるための効果的なプロキシとなるかどうかを考察する。
得られたデータセットからそのような翻訳を自動的に除去する2つの指標を提案する。
In experiment on five task across 20 languages in the IGLUE benchmark, we show that translated data can provide a useful signal for multilingual multimodal learning。
論文 参考訳(メタデータ) (2022-10-24T11:41:20Z) - C2KD: Cross-Lingual Cross-Modal Knowledge Distillation for Multilingual
Text-Video Retrieval [39.41224716332499]
多言語テキスト・ビデオ検索を改善するために,言語間クロスモーダル知識蒸留法を提案する。
英語のテキストビデオ検索が他の言語より優れているという事実に触発されて、異なる言語の入力テキストを用いて学生モデルを訓練する。
我々は、YouCook2ビデオデータセットの英語キャプションを8言語に翻訳することで、新しい多言語ビデオデータセット、Multi-YouCook2を導入する。
論文 参考訳(メタデータ) (2022-10-07T15:30:24Z) - UC2: Universal Cross-lingual Cross-modal Vision-and-Language
Pre-training [52.852163987208826]
UC2は、言語間クロスモーダル表現学習のための最初の機械翻訳拡張フレームワークである。
Masked Region-token Modeling (MRTM) と Visual Translation Language Modeling (VTLM) の2つの新しいプリトレーニングタスクを提案する。
提案手法は,英語タスクにおける単言語学習モデルと同等の性能を維持しつつ,多種多様な非英語ベンチマークで新たな最先端を実現する。
論文 参考訳(メタデータ) (2021-04-01T08:30:53Z) - Multilingual Multimodal Pre-training for Zero-Shot Cross-Lingual
Transfer of Vision-Language Models [144.85290716246533]
視覚言語モデルのゼロショット言語間移動について検討する。
本稿では,文脈化多言語マルチモーダル埋め込みを学習するトランスフォーマティブモデルを提案する。
論文 参考訳(メタデータ) (2021-03-16T04:37:40Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。