Apple Counting using Convolutional Neural Networks
- URL: http://arxiv.org/abs/2208.11566v1
- Date: Wed, 24 Aug 2022 14:13:40 GMT
- Title: Apple Counting using Convolutional Neural Networks
- Authors: Nicolai H\"ani, Pravakar Roy, and Volkan Isler
- Abstract summary: Estimating accurate and reliable fruit and vegetable counts from images in real-world settings, such as orchards, is a challenging problem.
We formulate fruit counting from images as a multi-class classification problem and solve it by training a Convolutional Neural Network.
Our network outperforms it in three out of four datasets with a maximum of 94% accuracy.
- Score: 22.504279159923765
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Estimating accurate and reliable fruit and vegetable counts from images in
real-world settings, such as orchards, is a challenging problem that has
received significant recent attention. Estimating fruit counts before harvest
provides useful information for logistics planning. While considerable progress
has been made toward fruit detection, estimating the actual counts remains
challenging. In practice, fruits are often clustered together. Therefore,
methods that only detect fruits fail to offer general solutions to estimate
accurate fruit counts. Furthermore, in horticultural studies, rather than a
single yield estimate, finer information such as the distribution of the number
of apples per cluster is desirable. In this work, we formulate fruit counting
from images as a multi-class classification problem and solve it by training a
Convolutional Neural Network. We first evaluate the per-image accuracy of our
method and compare it with a state-of-the-art method based on Gaussian Mixture
Models over four test datasets. Even though the parameters of the Gaussian
Mixture Model-based method are specifically tuned for each dataset, our network
outperforms it in three out of four datasets with a maximum of 94\% accuracy.
Next, we use the method to estimate the yield for two datasets for which we
have ground truth. Our method achieved 96-97\% accuracies. For additional
details please see our video here:
https://www.youtube.com/watch?v=Le0mb5P-SYc}{https://www.youtube.com/watch?v=Le0mb5P-SYc.
Related papers
- FruitNeRF: A Unified Neural Radiance Field based Fruit Counting Framework [5.363729942767801]
We introduce FruitNeRF, a unified novel fruit counting framework.
We use state-of-the-art view synthesis methods to count any fruit type directly in 3D.
We evaluate our methodology using both real-world and synthetic datasets.
arXiv Detail & Related papers (2024-08-12T14:40:38Z) - A pipeline for multiple orange detection and tracking with 3-D fruit
relocalization and neural-net based yield regression in commercial citrus
orchards [0.0]
We propose a non-invasive alternative that utilizes fruit counting from videos, implemented as a pipeline.
To handle occluded and re-appeared fruit, we introduce a relocalization component that employs 3-D estimation of fruit locations.
By ensuring that at least 30% of the fruit is accurately detected, tracked, and counted, our yield regressor achieves an impressive coefficient of determination of 0.85.
arXiv Detail & Related papers (2023-12-27T21:22:43Z) - Exploring the Effectiveness of Dataset Synthesis: An application of
Apple Detection in Orchards [68.95806641664713]
We explore the usability of Stable Diffusion 2.1-base for generating synthetic datasets of apple trees for object detection.
We train a YOLOv5m object detection model to predict apples in a real-world apple detection dataset.
Results demonstrate that the model trained on generated data is slightly underperforming compared to a baseline model trained on real-world images.
arXiv Detail & Related papers (2023-06-20T09:46:01Z) - Panoptic Mapping with Fruit Completion and Pose Estimation for
Horticultural Robots [33.21287030243106]
Monitoring plants and fruits at high resolution play a key role in the future of agriculture.
Accurate 3D information can pave the way to a diverse number of robotic applications in agriculture ranging from autonomous harvesting to precise yield estimation.
We address the problem of jointly estimating complete 3D shapes of fruit and their pose in a 3D multi-resolution map built by a mobile robot.
arXiv Detail & Related papers (2023-03-15T20:41:24Z) - Yield Evaluation of Citrus Fruits based on the YoloV5 compressed by
Knowledge Distillation [5.585209836203215]
In the field of planting fruit trees, pre-harvest estimation of fruit yield is important for fruit storage and price evaluation.
In this paper, a fruit counting and yield assessment method based on computer vision is proposed for citrus fruit trees.
Experiments show that the proposed method can accurately count fruits and approximate the yield.
arXiv Detail & Related papers (2022-11-16T08:09:38Z) - End-to-end deep learning for directly estimating grape yield from
ground-based imagery [53.086864957064876]
This study demonstrates the application of proximal imaging combined with deep learning for yield estimation in vineyards.
Three model architectures were tested: object detection, CNN regression, and transformer models.
The study showed the applicability of proximal imaging and deep learning for prediction of grapevine yield on a large scale.
arXiv Detail & Related papers (2022-08-04T01:34:46Z) - Facilitated machine learning for image-based fruit quality assessment in
developing countries [68.8204255655161]
Automated image classification is a common task for supervised machine learning in food science.
We propose an alternative method based on pre-trained vision transformers (ViTs)
It can be easily implemented with limited resources on a standard device.
arXiv Detail & Related papers (2022-07-10T19:52:20Z) - A methodology for detection and localization of fruits in apples
orchards from aerial images [0.0]
This work presents a methodology for automated fruit counting employing aerial-images.
It includes algorithms based on multiple view geometry to perform fruits tracking.
Preliminary assessments show correlations above 0.8 between fruit counting and true yield for apples.
arXiv Detail & Related papers (2021-10-24T01:57:52Z) - A CNN Approach to Simultaneously Count Plants and Detect Plantation-Rows
from UAV Imagery [56.10033255997329]
We propose a novel deep learning method based on a Convolutional Neural Network (CNN)
It simultaneously detects and geolocates plantation-rows while counting its plants considering highly-dense plantation configurations.
The proposed method achieved state-of-the-art performance for counting and geolocating plants and plant-rows in UAV images from different types of crops.
arXiv Detail & Related papers (2020-12-31T18:51:17Z) - Completely Self-Supervised Crowd Counting via Distribution Matching [92.09218454377395]
We propose a complete self-supervision approach to training models for dense crowd counting.
The only input required to train, apart from a large set of unlabeled crowd images, is the approximate upper limit of the crowd count.
Our method dwells on the idea that natural crowds follow a power law distribution, which could be leveraged to yield error signals for backpropagation.
arXiv Detail & Related papers (2020-09-14T13:20:12Z) - JHU-CROWD++: Large-Scale Crowd Counting Dataset and A Benchmark Method [92.15895515035795]
We introduce a new large scale unconstrained crowd counting dataset (JHU-CROWD++) that contains "4,372" images with "1.51 million" annotations.
We propose a novel crowd counting network that progressively generates crowd density maps via residual error estimation.
arXiv Detail & Related papers (2020-04-07T14:59:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.